On reflexive subobject lattices and reflexive endomorphism algebras

نویسنده

  • Dongsheng Zhao
چکیده

In this paper we study the reflexive subobject lattices and reflexive endomorphism algebras in a concrete category. For the category Set of sets and mappings, a complete characterization for both reflexive subobject lattices and reflexive endomorphism algebras is obtained. Some partial results are also proved for the category of abelian groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morita Type Equivalences and Reflexive Algebras

Two unital dual operator algebras A,B are called ∆-equivalent if there exists an equivalence functor F : AM → BM which “extends” to a ∗−functor implementing an equivalence between the categories ADM and BDM. Here AM denotes the category of normal representations of A and ADM denotes the category with the same objects as AM and ∆(A)-module maps as morphisms (∆(A) = A ∩A ). We prove that any such...

متن کامل

‎Finite iterative methods for solving systems of linear matrix equations over reflexive and anti-reflexive matrices

A matrix $Pintextmd{C}^{ntimes n}$ is called a generalized reflection matrix if $P^{H}=P$ and $P^{2}=I$‎. ‎An $ntimes n$‎ ‎complex matrix $A$ is said to be a reflexive (anti-reflexive) matrix with respect to the generalized reflection matrix $P$ if $A=PAP$ ($A=-PAP$)‎. ‎In this paper‎, ‎we introduce two iterative methods for solving the pair of matrix equations $AXB=C$ and $DXE=F$ over reflexiv...

متن کامل

Completely continuous Banach algebras

 For a Banach algebra $fA$, we introduce ~$c.c(fA)$, the set of all $phiin fA^*$ such that $theta_phi:fAto  fA^*$ is a completely continuous operator, where $theta_phi$ is defined by $theta_phi(a)=acdotphi$~~ for all $ain fA$. We call $fA$, a completely continuous Banach algebra if $c.c(fA)=fA^*$. We give some examples of completely continuous Banach algebras and a sufficient condition for an o...

متن کامل

A Morita Type Equivalence for Dual Operator Algebras

We generalize the main theorem of Rieffel for Morita equivalence of W -algebras to the case of unital dual operator algebras: two unital dual operator algebras A,B have completely isometric normal representations α, β such that α(A) = [Mβ(B)M] ∗ and β(B) = [Mα(A)M] ∗ for a ternary ring of operators M (i.e. a linear space M such that MMM ⊂ M) if and only if there exists an equivalence functor F ...

متن کامل

Reflexive Relations and Mal’tsev Conditions for Congruence Lattice Identities in Modular Varieties

Based on a property of tolerance relations, it was proved in [3] that for an arbitrary lattice identity implying modularity (or at least congruence modularity) there exists a Mal’tsev condition such that the identity holds in congruence lattices of algebras of a variety if and only if the variety satisfies the corresponding Mal’tsev condition. However, the Mal’tsev condition constructed in [3] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010