Genomic Basis of Adaptive Evolution: The Survival of Amur Ide (Leuciscus waleckii) in an Extremely Alkaline Environment
نویسندگان
چکیده
The Amur ide (Leuciscus waleckii) is a cyprinid fish that is widely distributed in Northeast Asia. The Lake Dali Nur population inhabits one of the most extreme aquatic environments on Earth, with an alkalinity up to 50 mmol/L (pH 9.6), thus providing an exceptional model with which to characterize the mechanisms of genomic evolution underlying adaptation to extreme environments. Here, we developed the reference genome assembly for L. waleckii from Lake Dali Nur. Intriguingly, we identified unusual expanded long terminal repeats (LTRs) with higher nucleotide substitution rates than in many other teleosts, suggesting their more recent insertion into the L. waleckii genome. We also identified expansions in genes encoding egg coat proteins and natriuretic peptide receptors, possibly underlying the adaptation to extreme environmental stress. We further sequenced the genomes of 10 additional individuals from freshwater and 18 from Lake Dali Nur populations, and we detected a total of 7.6 million SNPs from both populations. In a genome scan and comparison of these two populations, we identified a set of genomic regions under selective sweeps that harbor genes involved in ion homoeostasis, acid-base regulation, unfolded protein response, reactive oxygen species elimination, and urea excretion. Our findings provide comprehensive insight into the genomic mechanisms of teleost fish that underlie their adaptation to extreme alkaline environments.
منابع مشابه
Transcriptome Sequencing and Analysis of Wild Amur Ide (Leuciscus waleckii) Inhabiting an Extreme Alkaline-Saline Lake Reveals Insights into Stress Adaptation
BACKGROUND Amur ide (Leuciscus waleckii) is an economically and ecologically important species in Northern Asia. The Dali Nor population inhabiting Dali Nor Lake, a typical saline-alkaline lake in Inner Mongolia, is well-known for its adaptation to extremely high alkalinity. Genome information is needed for conservation and aquaculture purposes, as well as to gain further understanding into the...
متن کاملTranscriptional Profiling Reveals Differential Gene Expression of Amur Ide (Leuciscus waleckii) during Spawning Migration
Amur ide (Leuciscus waleckii), an important aquaculture species, inhabits neutral freshwater but can tolerate high salinity or alkalinity. As an extreme example, the population in Dali Nor lake inhabits alkalized soda water permanently, and migrates from alkaline water to neutral freshwater to spawn. In this study, we performed comparative transcriptome profiling study on the livers of Amur ide...
متن کاملA Green Competitive Vehicle Routing Problem under Uncertainty Solved by an Improved Differential Evolution Algorithm
Regarding the development of distribution systems in the recent decades, fuel consumption of trucks has increased noticeably, which has a huge impact on greenhouse gas emissions. For this reason, the reduction of fuel consumption has been one of the most important research areas in the last decades. The aim of this paper is to propose a robust mathematical model for a variant of a vehicle routi...
متن کاملIn situ activation of a Ni catalyst with Mo ion for hydrogen evolution reaction in alkaline solution
In this study Ni catalyst have been activated during hydrogen evolution reaction (HER) by adding Mo ions into the alkaline electrolyte. After dissolving different amounts of ammonium molybdate in the 1M NaOH as electrolyte, Ni catalyst was used as cathode for HER. Afterwards a comparison between hydrogen overpotential measured in Ni catalyst with and without in situ activation has been made; th...
متن کاملGenomic population structure of freshwater‐resident and anadromous ide (Leuciscus idus) in north‐western Europe
Climate change experts largely agree that future climate change and associated rises in oceanic water levels over the upcoming decades, will affect marine salinity levels. The subsequent effects on fish communities in estuarine ecosystems however, are less clear. One species that is likely to become increasingly affected by changes in salinity is the ide (Leuciscus idus). The ide is a stenohali...
متن کامل