Spatially regularized reconstruction of fibre orientation distributions in the presence of isotropic diffusion

نویسندگان

  • Quan Zhou
  • Oleg V. Michailovich
  • Yogesh Rathi
چکیده

The connectivity and structural integrity of the white matter of the brain is nowadays known to be implicated into a wide range of brain-related disorders. However, it was not before the advent of diffusion Magnetic Resonance Imaging (dMRI) that researches have been able to examine the properties of white matter in vivo. Presently, among a range of various methods of dMRI, high angular resolution diffusion imaging (HARDI) is known to excel in its ability to provide reliable information about the local orientations of neural fasciculi (aka fibre tracts). Moreover, as opposed to the more traditional diffusion tensor imaging (DTI), HARDI is capable of distinguishing the orientations of multiple fibres passing through a given spatial voxel. Unfortunately, the ability of HARDI to discriminate between neural fibres that cross each other at acute angles is always limited, which is the main reason behind the development of numerous post-processing tools, aiming at the improvement of the directional resolution of HARDI. Among such tools is spherical deconvolution (SD). Due to its ill-posed nature, however, SD standardly relies on a number of a priori assumptions which are to render its results unique and stable. In this paper, we propose a different approach to the problem of SD in HARDI, which accounts for the spatial continuity of neural fibres as well as the presence of isotropic diffusion. Subsequently, we demonstrate how the proposed solution can be used to successfully overcome the effect of partial voluming, while preserving the spatial coherency of cerebral diffusion at moderate-to-severe noise levels. In a series of both in silico and in vivo experiments, the performance of the proposed method is compared with that of several available alternatives, with the comparative results clearly supporting the viability and usefulness of our approach.

منابع مشابه

Structured sparsity for spatially coherent fibre orientation estimation in diffusion MRI

We propose a novel formulation to solve the problem of intra-voxel reconstruction of the fibre orientation distribution function (FOD) in each voxel of the white matter of the brain from diffusion MRI data. The majority of the state-of-the-art methods in the field perform the reconstruction on a voxel-by-voxel level, promoting sparsity of the orientation distribution. Recent methods have propos...

متن کامل

Fractional Thermoelasticity Model of a 2D Problem of Mode-I Crack in a Fibre-Reinforced Thermal Environment

A model of fractional-order of thermoelasticity is applied to study a 2D problem of mode-I crack in a fibre-reinforced thermal environment. The crack is under prescribed distributions of heat and pressure. The normal mode analysis is applied to deduce exact formulae for displacements, stresses, and temperature. Variations of field quantities with the axial direction are illustrated graphically....

متن کامل

Regularized diffusion tensor MRI for high angular resolution ODF estimation and fibre tractography

J. S. Campbell, P. Savadjiev, G. B. Pike, K. Siddiqi Montreal Neurological Institute, Montreal, Quebec, Canada, McGill Centre for Intelligent Machines, Montreal, Quebec, Canada Introduction High angular resolution diffusion (HARD) MRI can be used to infer multiple subvoxel fibre directions [1-2], and this information can be used to improve the precision of fibre tractography over that achieved ...

متن کامل

Stochastic reconstruction of carbon fiber paper gas diffusion layers of PEFCs: A comparative study

A 3D microstructure of the non-woven gas diffusion layers (GDLs) of polymer electrolyte fuel cells (PEFCs) is reconstructed using a stochastic method. For a commercial GDL, due to the planar orientation of the fibers in the GDL, 2D SEM image of the GDL surface is used to estimate the orientation of the carbon fibers in the domain. Two more microstructures with different fiber orientations are g...

متن کامل

Improved tractography using asymmetric fibre orientation distributions

Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • CoRR

دوره abs/1401.6196  شماره 

صفحات  -

تاریخ انتشار 2014