Comparison of Wood Composite Properties Using Cantilever-Beam Bending

نویسندگان

  • Houjiang Zhang
  • John F. Hunt
  • Lujing Zhou
چکیده

Wood-based composite panels generally are first tested out-of-plane in the primary panel direction followed by the cross panel direction, but rarely edgewise. While most applications use wood-based composites in the flat-wise orientation and only need the out-of-plane properties, there are construction configurations where edgewise properties are needed for improved design configurations. A square cantilever beam was used to determine the apparent stiffness (EI) and modulus of elasticity (E) differences for 3 wood-based composite panel materials. Specimens were cut along the primary panel direction or machine direction (MD) and perpendicular to the primary direction or cross-machine direction (CD). The square specimens were first non-destructively tested oriented in the normal or out-of-plane position, then rotated 90 degrees to measure edgewise properties. The results for a 20 mm thick medium density fiberboard (MDF) showed that the MD properties were 56% higher than the CD properties. The other two composite materials, 12 mm thick particleboard (PB) and 12 mm thick MDF, were essentially the same in the MD or CD directions. For all the materials, the differences between the out-of-plane and the edgewise loading directions showed higher EI and E between 17 to 61%, respectively. The largest difference was found in the PB composite material properties that were between 42 to 61% higher for the out-of-plane properties. For the 12 and 20 mm thick MDF material, inplane properties were 27 to 33% and 17 to 23% higher, respectively. The cantilever bending method was able to quickly assess the difference using the same specimen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison study between layered and functionally graded composite beams for static deflection and stress analyses

The aim of this paper is to compare the static deflections and stress results of layered and functionally graded composite beams under static load. In the comparison study, the results obtained for a cantilever beam under point load. The Timoshenko beam and the Euler-Bernoulli beam theories are used in the beam model. The energy based Ritz method is used for the solution of the problem and alge...

متن کامل

Numerical Determination of Delamination Onset in Laminated Symmetric DCB Specimen

In this study, a novel numerical method is proposed for determination of mode-I interlaminar fracture toughness, GIc, in multi-directional (MD) double cantilever beam (DCB) specimens using fracture properties of unidirectional DCB specimens. Two factors, β and Dc are defined to minimize the undesirable effects on strain energy release rate. β describes the difference between maximum and average...

متن کامل

Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the panels was measured using a ...

متن کامل

Finite Element Simulation of Simple Bending Problem and Code Development in C++

In this study, the simulation of simple bending problem is performed using an example of cantilever beam which is an important structural member. The author executed numerical simulations for simple and cracked cantilever beams using finite element stiffness method, analytical beam theory, finite element package (ANSYS) and then verified results with code generated in C++ language. In conclusio...

متن کامل

Modeling and modal analysis to oscillations of IPMC cantilever beam and simulating as an actuator

The purpose of this article is modal analysis of ionic polymer metal composite beams, then briefing the system to the unique parameters to help in up modeling of the actuator. In this paper at first using of Mathematical analysis and Closed form transfer function of cantilever beam dynamic response to the forces of different inputs (intensive and continuous) is calculated and for different type...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015