Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress.

نویسندگان

  • C J Harvey
  • R K Thimmulappa
  • A Singh
  • D J Blake
  • G Ling
  • N Wakabayashi
  • J Fujii
  • A Myers
  • S Biswal
چکیده

Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) is the primary transcription factor protecting cells from oxidative stress by regulating cytoprotective genes, including the antioxidant glutathione (GSH) pathway. GSH maintains cellular redox status and affects redox signaling, cell proliferation, and death. GSH homeostasis is regulated by de novo synthesis as well as GSH redox state; previous studies have demonstrated that Nrf2 regulates GSH homeostasis by affecting de novo synthesis. We report that Nrf2 modulates the GSH redox state by regulating glutathione reductase (GSR). In response to oxidants, lungs and embryonic fibroblasts (MEFs) from Nrf2-deficient (Nrf2(-/-)) mice showed lower levels of GSR mRNA, protein, and enzyme activity relative to wild type (Nrf2(+/+)). Nrf2(-/-) MEFs exhibited greater accumulation of glutathione disulfide and cytotoxicity compared to Nrf2(+/+) MEFs in response to t-butylhydroquinone, which was rescued by restoring GSR. Microinjection of glutathione disulfide induced greater apoptosis in Nrf2(-/-) MEFs compared to Nrf2(+/+) MEFs. In silico promoter analysis of the GSR gene revealed three putative antioxidant-response elements (ARE1, -44; ARE2, -813; ARE3, -1041). Reporter analysis, site-directed mutagenesis, and chromatin immunoprecipitation assays demonstrated binding of Nrf2 to two AREs distal to the transcription start site. Overall, Nrf2 is critical for maintaining the GSH redox state via transcriptional regulation of GSR and protecting cells against oxidative stress.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of the Evidence that Ochratoxin A Is an Nrf2 Inhibitor: Implications for Nephrotoxicity and Renal Carcinogenicity

Several studies have demonstrated that ochratoxin A (OTA) inhibits the nuclear factor, erythroid 2-like 2 (Nrf2) oxidative stress response pathway. At the cellular level this would attenuate (i) glutathione synthesis; (ii) recycling of oxidised glutathione; (iii) activity of oxidoreductases; and (iv) phase II metabolism inducibility. The effects combined would render the cell and tissue more vu...

متن کامل

Activation of nuclear factor (erythroid-2 like) factor 2 by toxic bile acids provokes adaptive defense responses to enhance cell survival at the emergence of oxidative stress.

Oxidative stress, causing necrotic and apoptotic cell death, is associated with bile acid toxicity. Using liver (HepG2, Hepa1c1c7, and primary human hepatocytes) and intestinal (C2bbe1, a Caco-2 subclone) cells, we demonstrated that toxic bile acids, such as lithocholic acid (LCA) and chenodeoxycholic acid, induced the nuclear factor (erythroid-2 like) factor 2 (Nrf2) target genes, especially t...

متن کامل

Oxidative Stress Responses and NRF2 in Human Leukaemia

Oxidative stress as a result of elevated levels of reactive oxygen species (ROS) has been observed in almost all cancers, including leukaemia, where they contribute to disease development and progression. However, cancer cells also express increased levels of antioxidant proteins which detoxify ROS. This includes glutathione, the major antioxidant in human cells, which has recently been identif...

متن کامل

Interplay between cytosolic disulfide reductase systems and the Nrf2/Keap1 pathway

NADPH transfers reducing power from bioenergetic pathways to thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) to support essential reductive systems. Surprisingly, it was recently shown that mouse livers lacking both TrxR1 and GR ('TR/GR-null') can sustain redox (reduction-oxidation) homoeostasis using a previously unrecognized NADPH-independent source of reducing power fuelled by...

متن کامل

3-Bromo-4,5-dihydroxybenzaldehyde Enhances the Level of Reduced Glutathione via the Nrf2-Mediated Pathway in Human Keratinocytes

A natural bromophenol found in seaweeds, 3-bromo-4,5-dihydroxybenzaldehyde (BDB), has been shown to possess antioxidant effects. This study aimed to investigate the mechanism by which BDB protects skin cells subjected to oxidative stress. The effect of BDB on the protein and mRNA levels of glutathione-related enzymes and the cell survival of human keratinocytes (HaCaT cells) was investigated. B...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 46 4  شماره 

صفحات  -

تاریخ انتشار 2009