Neural network based fault detection in robotic manipulators

نویسندگان

  • Arun T. Vemuri
  • Marios M. Polycarpou
  • Sotiris A. Diakourtis
چکیده

Exponentially stable trajectory following of robotic manipulators under a class of adaptive controls. In this paper we investigate the problem of fault diagnosis in rigid-link robotic manipulators. A learning architecture, with neural networks as on-line approximators of the oo-nominal system behavior, is used for monitoring the robotic system for faults. The approximation of the oo-nominal behavior provides a model of the fault characteristics which is used for the detection of faults. The stability and performance properties of the proposed fault detection scheme in the presence of system failure are rigorously established. Simulation examples illustrate the ability of the neural network based fault diagnosis methodology described in this paper to detect and accommodate faults in a two-link robotic system. This paper presents an approach for designing nonlinear fault diagnosis algorithms. This methodology can be enhanced by combination with parameter estimation methods, parity equations and fuzzy approaches 2, 7].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Detection and Fault Tolerance Methods for Industrial Robot Manipulators Based on Hybrid Intelligent Approach

Fault tolerance is increasingly important in modern industrial robotic manipulators, especially those operated in remote and hazardous environment. Faults in robotic manipulator can cause economic and serious damages. So the robots need the ability to detect as well as tolerate failures, allow effectively coping with internal failures and continue performing designated tasks without the need fo...

متن کامل

Fault Detection and Isolation for Multiple Robotic Manipulators

The problem of fault detection and isolation (FDI) in cooperative manipulators is addressed here. Four faults are considered: free-swinging joint faults, locked joint faults, incorrect measured joint position, and incorrect measured joint velocity. Free-swinging and locked joint faults are isolated via neural networks. For each arm, a Multilayer Perceptron (MLP) is used to reproduce the dynamic...

متن کامل

Robotic Manipulators Fault Diagnosis by Multilayer Perceptrons

In this paper a novel the artificial neural networks are used for both residual generation and residual analysis for fault diagnosis of robust manipulators. A Multilayer Perception (MLP) is employed to reproduce the dynamics of the robotic manipulator. Its outputs are compared with actual position and velocity measurements, generating the so-called residual vector. The residuals, when properly ...

متن کامل

Fault Detection and Isolation in Robotic Manipulators Using a Multilayer Perceptron and a Rbf Network Trained by the Kohonen’s Self-organizing Map

In this work, Artificial Neural Networks are employed in a Fault Detection and Isolation scheme for robotic manipulators. Two networks are utilized: a Multilayer Perceptron is employed to reproduce the manipulator dynamical behavior, generating a residual vector that is classified by a Radial Basis Function Network, giving the fault isolation. Two methods are utilized to choose the radial unit ...

متن کامل

UAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification

Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Robotics and Automation

دوره 14  شماره 

صفحات  -

تاریخ انتشار 1998