Evidence that αC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.

نویسندگان

  • John R Houser
  • Nathan E Hudson
  • Lifang Ping
  • E Timothy O'Brien
  • Richard Superfine
  • Susan T Lord
  • Michael R Falvo
چکیده

Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-scale strain-stiffening of semiflexible bundle networks.

Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of...

متن کامل

Effect of Reinforcement Type on the Tension Stiffening Model of Ultra-High Performance Concrete (UHPC)

Ultra-high performance concrete (UHPC) is a developing concrete and today is increasing to interest using it in structures due to its advantages such as high-compressive strength, modulus of elasticity, highly durability and low-permeability. Therefore, it is necessary to provide models for prediction of nonlinear behavior of this material. This study is aimed to investigate the tension-stiffen...

متن کامل

Strain history dependence of the nonlinear stress response of fibrin and collagen networks.

We show that the nonlinear mechanical response of networks formed from un-cross-linked fibrin or collagen type I continually changes in response to repeated large-strain loading. We demonstrate that this dynamic evolution of the mechanical response arises from a shift of a characteristic nonlinear stress-strain relationship to higher strains. Therefore, the imposed loading does not weaken the u...

متن کامل

α-α Cross-links increase fibrin fiber elasticity and stiffness.

Fibrin fibers, which are ~100 nm in diameter, are the major structural component of a blood clot. The mechanical properties of single fibrin fibers determine the behavior of a blood clot and, thus, have a critical influence on heart attacks, strokes, and embolisms. Cross-linking is thought to fortify blood clots; though, the role of α-α cross-links in fibrin fiber assembly and their effect on t...

متن کامل

Differential Cellular Response to Linear and Strain Stiffening Hydrogel Substrates

The mechanical properties of the substrate upon which cells are cultured have been shown to influence a variety of cell properties including cell adhesion, spreading, protein expression and differentiation. The work presented here examines how the nonlinear mechanical properties of biopolymer gels affect the cellular responses to substrate stiffness. Cell spread area decreases with decreasing s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 2010