Predicting DNA Methylation Susceptibility Using CpG Flanking Sequences

نویسندگان

  • Sun Kim
  • Meng Li
  • Hyun-il Henry Paik
  • Kenneth P. Nephew
  • Huidong Shi
  • Robin Kramer
  • Dong Xu
  • Tim Hui-Ming Huang
چکیده

DNA methylation is a type of chemical modification of DNA that adds a methyl group to DNA at the fifth carbon of the cytosine pyrimidine ring. In normal cells, methylation of CpG dinucleotides is extensively found across the genome. However, specific DNA regions known as the CpG islands, short CpG dinucleotide-rich stretches (500 bp - 2000bp), are commonly unmethylated. During tumorigenesis, on the other hand, global de-methylation and CpG island hypermethylation are widely observed. De novo hypermethylation at CpG dinucleotides is typically associated with loss of expression of flanking genes, thus it is believed to be an alternative to mutation and deletion in the inactivation of tumor suppressor genes. In this paper, we report that sequences flanking CpG sites can be used for predicting DNA methylation levels. DNA methylation levels were measured by utilizing a new high throughput sequencing technology (454) to sequence bisulfite treated DNA from four types of primary leukemia and lymphoma cells and normal peripheral blood lymphocytes. After measuring methylation levels at each CpG site, we used 30 bp flanking sequences to characterize methylation susceptibility in terms of character compositions and built predictive models for DNA methylation susceptibility, achieving up to 75% prediction accuracy in 10-fold cross validation tests. Our study is first of its kind to build predictive models for methylation susceptibility by utilizing CpG site specific methylation levels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicting CpG Islands and DNA Methlation in the Cow Genome Using DNA Microarray Meta-Analysis and Genome Wide Scanning

DNA methylation is a type of epigenetic changes that directly affects DNA. In mammals, DNA methylation is essential for fetal development and stem cell differentiation and this phenomenon essentially occurs within the CpG islands. In this study, two methods were used to study the DNA methylation profile of cow genome. In the first method, the DNA methylation profile of the differentially expres...

متن کامل

C5 cytosine methylation at CpG sites enhances sequence selectivity of mitomycin C-DNA bonding.

We have established that UvrABC nuclease is equally efficient in cutting mitomycin C (MC)-DNA monoadducts formed at different sequences and that the degree of UvrABC cutting represents the extent of drug-DNA bonding. Using this method we determined the effect of C5 cytosine methylation on the DNA monoalkylation by MC and the related analogues N-methyl-7-methoxyaziridinomitosene (MS-NMA) and 10-...

متن کامل

GC Content Increased at CpG Flanking Positions of Fish Genes Compared with Sea Squirt Orthologs as a Mechanism for Reducing Impact of DNA Methylation

BACKGROUND Fractional DNA methylation in sea squirts evolved to global DNA methylation in fish. The impact of global DNA methylation is reflected by more CpG depletions and/or more A/T to G/C changes at CpG flanking positions due to context-dependent mutations of methylated CpG sites. METHODS AND FINDINGS In this report, we demonstrate that the sea squirt genes have undergone more CpG to TpG/...

متن کامل

DNMT3L Modulates Significant and Distinct Flanking Sequence Preference for DNA Methylation by DNMT3A and DNMT3B In Vivo

The DNTM3A and DNMT3B de novo DNA methyltransferases (DNMTs) are responsible for setting genomic DNA methylation patterns, a key layer of epigenetic information. Here, using an in vivo episomal methylation assay and extensive bisulfite methylation sequencing, we show that human DNMT3A and DNMT3B possess significant and distinct flanking sequence preferences for target CpG sites. Selection for h...

متن کامل

Predicting aberrant CpG island methylation.

Epigenetic silencing associated with aberrant methylation of promoter region CpG islands is one mechanism leading to loss of tumor suppressor function in human cancer. Profiling of CpG island methylation indicates that some genes are more frequently methylated than others, and that each tumor type is associated with a unique set of methylated genes. However, little is known about why certain ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing

دوره   شماره 

صفحات  -

تاریخ انتشار 2008