Introductory lectures on automorphic forms

نویسنده

  • Nolan R. Wallach
چکیده

1 Orbital integrals and the Harish-Chandra transform. This section is devoted to a rapid review of some of the basic analysis that is necessary in representation theory and the basic theory of automorphic forms. Even though the material below looks complicated it is just the tip of the iceberg. 1.1 Left invariant measures. Let X be a locally compact topological space with a countable basis for its topology. Let C(X) denote the space of all continuous complex valued functions on X. If f is a function on X then we denote by supp(f) the closure of the set {x ∈ X|f (x) = 0}. We set C c (X) = {f ∈ C(X)|supp(f) is compact}. If K ⊂ X is a compact subset then we set C K (X) = {f ∈ C(X)|supp(f) ⊂ K}. Whe endow each space with the norm topology induced by f K = max x∈K |f (x)|. We endow C c (X) with the union topology. That is, a subbasis of the topology is the set consisting of the sets that are open subsets of some C K (X). With this notation in place a complex measure on X is a continuous linear map µ : C c (X) → C. A measure is a complex measure µ such that µ(f) is real if f is real valued and non-negative if f takes on only non-negative values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Langlands picture of automorphic forms and L - functions

Recall the lectures in the first two weeks. We discussed Tate’s thesis, i.e. automorphic forms of GL1, which is a generalization of Hecke’s work in 1910’s. Now suppose f ∈ Sk(Γ) is an Hecke eigenform with normalized 1-st Fourier coefficient a1 = 1. Ramanujan-Deligne theorem says ∣∣a(p)p− k−1 2 ∣∣ 6 2, for any p. Let cp = a(p)p− k−1 2 = αp + α−1 p . The Dirichlet series associated f , which is n...

متن کامل

Lectures on the Langlands Program and Conformal Field Theory

Part I. The origins of the Langlands Program 9 1. The Langlands correspondence over number fields 9 1.1. Galois group 9 1.2. Abelian class field theory 10 1.3. Frobenius automorphisms 13 1.4. Rigidifying ACFT 14 1.5. Non-abelian generalization? 15 1.6. Automorphic representations of GL2(AQ) and modular forms 18 1.7. Elliptic curves and Galois representations 22 2. From number fields to function...

متن کامل

Lectures on automorphic L-functions

PREFACE This article follows the format of five lectures that we gave on automorphic Lfunctions. The lectures were intended to be a brief introduction for number theorists to some of the main ideas in the subject. Three of the lectures concerned the general properties of automorphic L-functions, with particular reference to questions of spectral decomposition. We have grouped these together as ...

متن کامل

Lectures on the Arthur–selberg Trace Formula

These are Notes prepared for nine lectures given at the Mathematical Sciences Research Institute, MSRI, Berkeley during the period January–March 1995. It is a pleasant duty to record here my gratitude to MSRI, and its staff, for making possible this 1994–95 Special Year in Automorphic Forms, and for providing such a setting for work. The purpose of these Notes is to describe the contents of Art...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001