MARMOT: A Toolkit for Translation Quality Estimation at the Word Level
نویسندگان
چکیده
We present Marmot — a new toolkit for quality estimation (QE) of machine translation output. Marmot contains utilities targeted at quality estimation at the word and phrase level. However, due to its flexibility and modularity, it can also be extended to work at the sentence level. In addition, it can be used as a framework for extracting features and learning models for many common natural language processing tasks. The tool has a set of state-of-the-art features for QE, and new features can easily be added. The tool is open-source and can be downloaded from https://github.com/qe-team/marmot/.
منابع مشابه
An Open Source Toolkit for Word-level Confidence Estimation in Machine Translation
Recently, a growing need of Confidence Estimation (CE) for Statistical Machine Translation (SMT) systems in Computer Aided Translation (CAT), was observed. However, most of the CE toolkits are optimized for a single target language (mainly English) and, as far as we know, none of them are dedicated to this specific task and freely available. This paper presents an open-source toolkit for predic...
متن کاملQUality Estimation from ScraTCH (QUETCH): Deep Learning for Word-level Translation Quality Estimation
This paper describes the system submitted by the University of Heidelberg to the Shared Task on Word-level Quality Estimation at the 2015 Workshop on Statistical Machine Translation. The submitted system combines a continuous space deep neural network, that learns a bilingual feature representation from scratch, with a linear combination of the manually defined baseline features provided by the...
متن کاملMT-EQuAl: a Toolkit for Human Assessment of Machine Translation Output
MT-EQuAl (Machine Translation Errors, Quality, Alignment) is a toolkit for human assessment of Machine Translation (MT) output. MT-EQuAl implements three different tasks in an integrated environment: annotation of translation errors, translation quality rating (e.g. adequacy and fluency, relative ranking of alternative translations), and word alignment. The toolkit is webbased and multi-user, a...
متن کاملTranslation Quality Estimation using Recurrent Neural Network
This paper describes our submission to the shared task on word/phrase level Quality Estimation (QE) in the First Conference on Statistical Machine Translation (WMT16). The objective of the shared task was to predict if the given word/phrase is a correct/incorrect (OK/BAD) translation in the given sentence. In this paper, we propose a novel approach for word level Quality Estimation using Recurr...
متن کاملUAlacant word-level and phrase-level machine translation quality estimation systems at WMT 2016
This paper describes the Universitat d’Alacant submissions (labeled as UAlacant) to the machine translation quality estimation (MTQE) shared task at WMT 2016, where we have participated in the word-level and phrase-level MTQE subtasks. Our systems use external sources of bilingual information as a black box to spot sub-segment correspondences between the source segment and the translation hypot...
متن کامل