I. INTRODUCTION IRECT and indirect evidence implicates that VEGF is a significant factor in wound healing immediately after injury and stimulates wound healing via multiple mechanisms
نویسندگان
چکیده
We evaluated the effect of sensory (direct current (DC), 600μA) and motor (monophasic current, pulse duration 300μs, 100 Hz, 2.5-3mA) intensities of cathodal electrical stimulation (ES) current to release VEGF and biomechanical properties of wound. 54 male Sprague-dawley rats were randomly assigned into one control and two experimental groups. A full thickness skin incision was made on animals’ dorsal region. The experimental groups received ES for 1h/day and every other day. VEGF expression was measured in skin on the 7th day after surgical incision and tensile strength was measured on 21st day. On the 7th day, the values of skin VEGF in the sensory group were significantly greater than those of the other groups (p < 0.05). Sensory and Motor intensity stimulation, can not improve the biomechanical properties of the repaired wounds. It seems the mechanical environment induced by sensory and motor intensity of electrical stimulation, could not simulate the role of normal daily stress and strain to maturation of collagen fibers and their cross links. Further work is needed to determine the relationship between VEGF expression after ES and its effect on tensile strength of healed wound. Keywords—Biomechanical properties Direct current, Monophasic current, Skin, VEGF
منابع مشابه
Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملEffect of Anodal and Cathodal Microamperage Electrical Stimulation on Injury Potential and Size of Acute Wound in Guinea Pig
Introduction: It is believed that injury potential has a regulatory role in wound healing process and the application of exogenous electrical stimulation may serve to mimic the natural endogenous bioelectric current so that can improve the wound healing. Up to now, this hypothesis has not been researched in surgically acute wounds. Materials and Methods: Thirty nine male guinea pigs were random...
متن کاملSynergistic Effects of Graphene Oxide and Vascular Endothelial Growth Factor Immobilized in Polycaprolactone Nanofiber as a Candidate for Diabetic Wound Healing
Background & Objective: The combination of two or more therapeutic agents and their synergetic impacts can be therapeutically effective against multifactorial diseases, such as diabetic foot ulcers. This study demonstrates the application of a nanofiber-based drug delivery system with a controlled release of the growth factor. Various studies have shown that vascular endothelial growth facto...
متن کاملHeterologous expression of a truncated form of human recombinant vascular endothelial growth factor-A and its biological activity in wound healing
Objective(s): Vascular endothelial growth factor (VEGF) is one of the most effective proteins in angiogenesis, mesenchymal stem cells (MSCs) differentiation and wound healing. These abilities are therapeutic potential of VEGF in diabetic retinopathy, nephropathy and other tissue damage circumstances. In this study, recombinant VEGF was produced in Escherichia coli (E. coli) system and then biol...
متن کاملAcemannan stimulates gingival fibroblast proliferation; expressions of keratinocyte growth factor-1, vascular endothelial growth factor, and type I collagen; and wound healing.
Aloe vera has long been used as a traditional medicine for inducing wound healing. Gingival fibroblasts (GFs) play an important role in oral wound healing. In this study, we investigated the effects of acemannan, a polysaccharide extracted from Aloe vera gel, on GF proliferation; keratinocyte growth factor-1 (KGF-1), vascular endothelial growth factor (VEGF), and type I collagen production; and...
متن کامل