Cartogram Data Projection for Self-Organizing Maps Enhanced visual data exploration in R

نویسندگان

  • David H. Brown
  • Lutz Hamel
چکیده

The Self-Organizing Map (SOM) is very often visualized by applying Ultsch’s Unified Distance Matrix (UMatrix) shading and labeling the cells of the 2-D grid with training data observations nearest to that node in feature space. Although powerful and the de facto standard visualization for SOMs, this does not provide for two key pieces of information when considering real world data mining applications: (a) While the U-Matrix indicates the location of possible clusters on the map, it typically does not accurately convey the size of the underlying data population within these clusters. (b) When mapping training data observations onto the 2-D grid of the SOM it often occurs that multiple observations are mapped onto a single cell of the grid. Simply labeling the observations on a single cell does not provide any insights of the feature-space distribution of observations within that cell and in practical data mining applications it is often desirable to understand the distribution or “goodness of fit” of the observations as they are mapped to the individual SOM

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cartogram Data Projection for Self-Organizing Maps

Self-Organizing Maps (SOMs) are often visualized by applying Ultsch’s Unified Distance Matrix (U-Matrix) and labeling the cells of the 2-D grid with training data observations. Although powerful and the de facto standard visualization for SOMs, this does not provide for two key pieces of information when considering real world data mining applications: (a) While the U-Matrix indicates the locat...

متن کامل

Cartograms, Self-Organizing Maps, and Magnification Control

This paper presents a simple way to compensate the magnification effect of Self-Organizing Maps (SOM) when creating cartograms using CartoSOM. It starts with a brief explanation of what a cartogram is, how it can be used, and what sort of metrics can be used to assess its quality. The methodology for creating a cartogram with a SOM is then presented together with an explanation of how the magni...

متن کامل

Experimental Evaluation of the Usability of Cartogram for Representation of GlobeLand30 Data

GlobeLand30 is the world’s first global land cover dataset at 30 m resolution for two epochs, i.e., 2000 and 2010. On the official website, the data are represented by qualitative thematic maps which show the distribution of global land cover, and some proportional symbol maps which are quantitative representations of land cover data. However, researchers have also argued that the cartogram, a ...

متن کامل

Landforms identification using neural network-self organizing map and SRTM data

During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...

متن کامل

Carto-SOM: cartogram creation using self-organizing maps

The basic idea of a cartogram is to distort a map. This distortion comes from the substitution of area for some other variable (in most examples population. The SOM constitutes a very flexible tool that has been used in many different tasks. In this article we have presented a general method for constructing density-equalizing projections or cartograms, using the basic SOM algorithm, providing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011