Crossveinless-2 is required for the relocalization of Chordin protein within the vertebral field in mouse embryos.
نویسندگان
چکیده
Bone morphogenetic proteins (BMPs), as well as the BMP-binding molecules Chordin (Chd), Crossveinless-2 (CV2) and Twisted Gastrulation (Tsg), are essential for axial skeletal development in the mouse embryo. We previously reported a strong genetic interaction between CV2 and Tsg and proposed a role for this interaction in the shaping of the BMP morphogenetic field during vertebral development. In the present study we investigated the roles of CV2 and Chd in the formation of the vertebral morphogenetic field. We performed immunostainings for CV2 and Chd protein on wild-type, CV2(-/-) or Chd(-/-) mouse embryo sections at the stage of onset of the vertebral phenotypes. By comparing mRNA and protein localizations we found that CV2 does not diffuse away from its place of synthesis, the vertebral body. The most interesting finding of this study was that Chd synthesized in the intervertebral disc accumulates in the vertebral body. This relocalization does not take place in CV2(-/-) mutants. Instead, Chd was found to accumulate at its site of synthesis in CV2(-/-) embryos. These results indicate a CV2-dependent flow of Chd protein from the intervertebral disc to the vertebral body. Smad1/5/8 phosphorylation was decreased in CV2(-/-)vertebral bodies. This impaired BMP signaling may result from the decreased levels of Chd/BMP complexes diffusing from the intervertebral region. The data indicate a role for CV2 and Chd in the establishment of the vertebral morphogenetic field through the long-range relocalization of Chd/BMP complexes. The results may have general implications for the formation of embryonic organ-forming morphogenetic fields.
منابع مشابه
Development of the vertebral morphogenetic field in the mouse: interactions between Crossveinless-2 and Twisted Gastrulation.
Crossveinless-2 (Cv2), Twisted Gastrulation (Tsg) and Chordin (Chd) are components of an extracellular biochemical pathway that regulates Bone Morphogenetic Protein (BMP) activity during dorso-ventral patterning of Drosophila and Xenopus embryos, the formation of the fly wing, and mouse skeletogenesis. Because the nature of their genetic interactions remained untested in the mouse, we generated...
متن کاملBinding between Crossveinless-2 and Chordin Von Willebrand Factor Type C Domains Promotes BMP Signaling by Blocking Chordin Activity
BACKGROUND Crossveinless-2 (CV2) is an extracellular BMP modulator protein of the Chordin family, which can either enhance or inhibit BMP activity. CV2 binds to BMP2 via subdomain 1 of the first of its five N-terminal von Willebrand factor type C domains (VWC1). Previous studies showed that this BMP binding is required for the anti-, but not for the pro-BMP effect of CV2. More recently, it was ...
متن کاملSpemann’s organizer and the self-regulation of embryonic fields
Embryos and developing organs have the remarkable ability of self-regenerating after experimental manipulations. In the Xenopus blastula half-embryos can regenerate the missing part, producing identical twins. Studies on the molecular nature of Spemann's organizer have revealed that self-regulation results from the battle between two signaling centers under reciprocal transcriptional control. L...
متن کاملCrossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation.
Signaling by bone morphogenetic proteins (Bmps) plays a pivotal role in developmental and pathological processes, and is regulated by a complex interplay with secreted Bmp binding factors, including Crossveinless 2 (Cvl2). Although structurally related to the Bmp antagonist Chordin, Crossveinless 2 has been described to be both a Bmp agonist and antagonist. Here, we present the first loss-of-fu...
متن کاملCrossveinless-2 Is a BMP feedback inhibitor that binds Chordin/BMP to regulate Xenopus embryonic patterning.
Vertebrate Crossveinless-2 (CV2) is a secreted protein that can potentiate or antagonize BMP signaling. Through embryological and biochemical experiments we find that: (1) CV2 functions as a BMP4 feedback inhibitor in ventral regions of the Xenopus embryo; (2) CV2 complexes with Twisted gastrulation and BMP4; (3) CV2 is not a substrate for tolloid proteinases; (4) CV2 binds to purified Chordin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 347 1 شماره
صفحات -
تاریخ انتشار 2010