Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking.
نویسندگان
چکیده
Si-based anodes in lithium ion batteries (LIBs) have exceptionally high theoretical capacity, but the use of a Si-based anode in LIBs is problematic because the charging-discharging process can fracture the Si particles. Alginate and its derivatives show promise as Si particle binders in the anode. We show that calcium-mediated "egg-box" electrostatic cross-linking of alginate improves toughness, resilience, electrolyte desolvation of the alginate binder as a Si-binder for LIBs. Consequently, the improved mechanical properties of the calcium alginate binder compared to the sodium alginate binder and other commercial binders extend the lifetime and increase the capacity of Si-based anodes in LIBs.
منابع مشابه
Improved Mechanical and Electrochemical Properties of Artificial Graphite Anode Using Water-Based Binders in Lithium-Ion Batteries
In recent years, many studies have focused on the active materials of anodes to improve the performance of LIBs, while limited attention has been given to polymer binders, which act as inactive ingredients. However, polymer binders have amazing influence on the electrochemical performance of anodes. Herein, to investigate the binding performance between MCMB artificial graphite and the copper c...
متن کاملToward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid.
Si-based Li-ion battery anodes offer specific capacity an order of magnitude beyond that of conventional graphite. However, the formation of stable Si anodes is a challenge because of significant volume changes occurring during their electrochemical alloying and dealloying with Li. Binder selection and optimization may allow significant improvements in the stability of Si-based anodes. Most stu...
متن کاملFabrication of Si negative electrodes for Li-ion batteries (LIBs) using cross-linked polymer binders
Currently, Si as an active material for LIBs has been attracting much attention due to its high theoretical specific capacity (3572 mAh g-1). However, a disadvantage when using a Si negative electrode for LIBs is the abrupt drop of its capabilities during the cycling process. Therefore, there have been a few studies of polymers such as poly(vinylidene fluoride) (PVdF), carboxymethyl cellulose (...
متن کاملDevelopment of Lifetime Prediction Model of Lithium-Ion Battery Based on Minimizing Prediction Errors of Cycling and Operational Time Degradation Using Genetic Algorithm
Accurate lifetime prediction of lithium-ion batteries is a great challenge for the researchers and engineers involved in battery applications in electric vehicles and satellites. In this study, a semi-empirical model is introduced to predict the capacity loss of lithium-ion batteries as a function of charge and discharge cycles, operational time, and temperature. The model parameters are obtai...
متن کاملImproved nanofluid cooling of cylindrical lithium ion battery pack in charge/discharge operation using wavy/stair channels and copper sheath
Abstract: In order to improve the thermal management system for cooling an electric vehicle battery pack, the thermal performance of the battery pack in two states of charge and discharge in different working conditions by using a copper sheath around the batteries and a copper sheath, as well as a stair channel on top of the battery pack and using of nanofluid as cooling fluid, has been studie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 46 شماره
صفحات -
تاریخ انتشار 2014