Gamma-Convergence of Discrete Functionals with Nonconvex Perturbation for Image Classification
نویسندگان
چکیده
منابع مشابه
An approximation of Mumford-Shah energy by a family of discrete edge-preserving functionals
We show the Γ-convergence of a family of discrete functionals to the Mumford and Shah image segmentation functional. The functionals of the family are constructed by modifying the elliptic approximating functionals proposed by Ambrosio and Tortorelli. The quadratic term of the energy related to the edges of the segmentation is replaced by a nonconvex functional.
متن کاملGeneric Half-Quadratic Optimization for Image Reconstruction
We study the global and local convergence of a generic half-quadratic optimization algorithm inspired from the dual energy formulation of Geman and Reynolds [IEEE Trans. Pattern Anal. Mach. Intell., 14 (1992), pp. 367–383]. The target application is the minimization of C convex and nonconvex objective functionals arising in regularized image reconstruction. Our global convergence proofs are bas...
متن کاملDimension reduction for functionals on solenoidal vector fields
We study integral functionals constrained to divergence-free vector fields in Lp on a thin domain, under standard p-growth and coercivity assumptions, 1 < p < ∞. We prove that as the thickness of the domain goes to zero, the Gamma-limit with respect to weak convergence in Lp is always given by the associated functional with convexified energy density wherever it is finite. Remarkably, this happ...
متن کاملپخش بار اقتصادی دینامیکی بهینه با استفاده از P-PSO پیشنهادی
In solving the electrical power systems economic dispatch (ED) problems, the goal is to schedule the committed generating units outputs so as to meet the required load demand at the minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a different approach to economic dispatch problems with particle swarm optimization (PSO) techniq...
متن کاملOptimality conditions for approximate solutions of vector optimization problems with variable ordering structures
We consider nonconvex vector optimization problems with variable ordering structures in Banach spaces. Under certain boundedness and continuity properties we present necessary conditions for approximate solutions of these problems. Using a generic approach to subdifferentials we derive necessary conditions for approximate minimizers and approximately minimal solutions of vector optimizatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 42 شماره
صفحات -
تاریخ انتشار 2004