A Deflation Approach for Large-Scale Lur'e Equations

نویسندگان

  • Federico Poloni
  • Timo Reis
چکیده

We present an approach to the determination of the stabilizing solution of Lur’e matrix equations. We show that the knowledge of a certain deflating subspace of an even matrix pencil may lead to Lur’e equations which are defined on some subspace, the so-called “projected Lur’e equations.” These projected Lur’e equations are shown to be equivalent to projected Riccati equations, if the deflating subspace contains the subspace corresponding to infinite eigenvalues. This result leads to a novel numerical algorithm that basically consists of two steps. First we determine the deflating subspace corresponding to infinite eigenvalues using an algorithm based on the so-called “neutral Wong sequences,” which requires a moderate number of kernel computations; then we solve the resulting projected Riccati equations. Altogether this method can deliver solutions in low-rank factored form, it is applicable for large-scale Lur’e equations and exploits possible sparsity of the matrix coefficients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations

Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...

متن کامل

A weighted global GMRES algorithm with deflation for solving large Sylvester matrix equations

The solution of large scale Sylvester matrix equation plays an important role in control and large scientific computations. A popular approach is to use the global GMRES algorithm. In this work, we first consider the global GMRES algorithm with weighting strategy, and propose some new schemes based on residual to update the weighting matrix. Due to the growth of memory requirements and computat...

متن کامل

Deflated Iterative Methods for Linear Equations with Multiple Right-hand Sides∗

A new approach is discussed for solving large nonsymmetric systems of linear equations with multiple right-hand sides. The first system is solved with a deflated GMRES method that generates eigenvector information at the same time that the linear equations are solved. Subsequent systems are solved by combining restarted GMRES with a projection over the previously determined eigenvectors. This a...

متن کامل

A Trust Region Algorithm for Solving Nonlinear Equations (RESEARCH NOTE)

This paper presents a practical and efficient method to solve large-scale nonlinear equations. The global convergence of this new trust region algorithm is verified. The algorithm is then used to solve the nonlinear equations arising in an Expanded Lagrangian Function (ELF). Numerical results for the implementation of some large-scale problems indicate that the algorithm is efficient for these ...

متن کامل

Influences of Small-Scale Effect and Boundary Conditions on the Free Vibration of Nano-Plates: A Molecular Dynamics Simulation

This paper addresses the influence of boundary conditions and small-scale effect on the free vibration of nano-plates using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) is used to obtain fundamental frequencies of single layered graphene sheets (SLGSs) which modeled in this paper as the mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2012