DTI abnormalities in anterior corpus callosum of rats with spike-wave epilepsy
نویسندگان
چکیده
OBJECTIVE Absence epilepsy is a common seizure disorder in children which can produce chronic psychosocial sequelae. Human patients and rat absence models show bilateral spike-wave discharges (SWD) in cortical regions. We employed diffusion tensor imaging (DTI) in rat absence models to detect abnormalities in white matter pathways connecting regions of seizure activity. METHODS We studied Wistar albino Glaxo rats of Rijswijk (WAG/Rij), genetic absence epilepsy rats of Strasbourg (GAERS), and corresponding nonepileptic control strains. Ex vivo DTI was performed at 9.4 T with diffusion gradients applied in 16 orientations. We compared fractional anisotropy (FA), perpendicular (lambda(perpendicular)) and parallel (lambda(||)) diffusivity between groups using t-maps and region of interest (ROI) measurements. RESULTS Adult epileptic WAG/Rij rats exhibited a localized decrease in FA in the anterior corpus callosum. This area was confirmed by tractography to interconnect somatosensory cortex regions most intensely involved in seizures. This FA decrease was not present in young WAG/Rij rats before onset of SWD. GAERS, which have more severe SWD than WAG/Rij, exhibited even more pronounced callosal FA decreases. Reduced FA in the epileptic animals originated from an increased lambda(perpendicular) with no significant changes in lambda(||). INTERPRETATION Reduced FA with increased lambda(perpendicular) suggests that chronic seizures cause reduction in myelin or decreased axon fiber density in white matter pathways connecting regions of seizure activity. These DTI abnormalities may improve the understanding of chronic neurological difficulties in children suffering with absence epilepsy, and may also serve as a noninvasive biomarker for monitoring beneficial effects of treatment.
منابع مشابه
X-Linked Lissencephaly with Absent Corpus Callosum and Ambiguous Genitalia: A Case Report
Background: X-linked lissencephaly with ambiguous genitalia (XLAG) is a recently described genetic disorder, in which patients present with lissencephaly, agenesis of the corpus callosum, refractory epilepsy of neonatal onset, acquired microcephaly, and male genotype with ambiguous genitalia. XLAG is responsible for a severe neurological disorder of neonatal onset in boys. A gyration defect con...
متن کاملFiber Tractography and Diffusion Tensor Imaging in Children with Agenesis and Dysgenesis of Corpus Callosum: A Clinico-Radiological Correlation
Background Corpus callosum is the largest commissure in human brain. It consists of tightly packed white matter tracts connecting the two cerebral hemispheres. In this study we aimed to evaluate role of fiber tractography (FT), and diffusion tensor imaging (DTI) in ped...
متن کاملHigh-resolution magnetic resonance microscopy and diffusion tensor imaging to assess brain structural abnormalities in the murine mucopolysaccharidosis VII model.
High-resolution microscopic magnetic resonance imaging (μMRI) and diffusion tensor imaging (DTI) were performed to characterize brain structural abnormalities in a mouse model of mucopolysaccharidosis type VII (MPS VII). Microscopic magnetic resonance imaging demonstrated a decrease in the volume of anterior commissure and corpus callosum and a slight increase in the volume of the hippocampus i...
متن کاملAge-related decline in the microstructural integrity of white matter in children with early- and continuously-treated PKU: a DTI study of the corpus callosum.
Structural, volumetric, and microstructural abnormalities have been reported in the white matter of the brain in individuals with phenylketonuria (PKU). Very little research, however, has been conducted to investigate the development of white matter in children with PKU, and the developmental trajectory of their white matter microstructure is unknown. In the current study, diffusion tensor imag...
متن کاملSHORT REPORT Neuropathological abnormalities of the corpus callosum in schizophrenia: a diVusion tensor imaging study
Objectives—DiVusion tensor imaging (DTI), a technique capable of examining water diVusion in diVerent tissues and the organisation of white matter tracts, was used to investigate the neuropathology of the corpus callosum in vivo in patients with schizophrenia. Methods—DiVusion tensor imaging was performed in 20 schizophrenic patients and 25 healthy controls. Two complementary measures, mean diV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 47 2 شماره
صفحات -
تاریخ انتشار 2009