Fast Solution of Yandermonde-Like Systems Involving Orthogonal Polynomials
نویسنده
چکیده
Consider the (n +1) x (n + 1) Vandermonde-like matrix P = [p,--i(o/-i)L where the polynomials po(x),... ,pn(x) satisfy a three-term recurrence relation. We develop algorithms for solving the primal and dual systems, Px = b and Pa =f respectively, in O(n) arithmetic operations and O(n) elements of storage. These algorithms generalize those of Bjorck & Pereyra which apply to the monomial case Pi(x) = x'. When the p,(x) are the Chebyshev polynomials, the algorithms are shown to be numerically unstable. However, it is found empirically that the addition of just one step of iterative refinement is, in single precision, enough to make the algorithms numerically stable.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملA Fast Björck-Pereyra-Type Algorithm for Solving Hessenberg-Quasiseparable-Vandermonde Systems
In this paper we derive a fast O(n) algorithm for solving linear systems where the coefficient matrix is a polynomial-Vandermonde matrix VR(x) = [rj−1(xi)] with polynomials {rk(x)} related to a Hessenberg quasiseparable matrix. The result generalizes the well-known Björck-Pereyra algorithm for classical Vandermonde systems involving monomials. It also generalizes the algorithms of [RO91] for VR...
متن کاملA Traub–like algorithm for Hessenberg-quasiseparable-Vander- monde matrices of arbitrary order
Although Gaussian elimination uses O(n) operations to invert an arbitrary matrix, matrices with a special Vandermonde structure can be inverted in only O(n) operations by the fast Traub algorithm. The original version of Traub algorithm was numerically unstable although only a minor modification of it yields a high accuracy in practice. The Traub algorithm has been extended from Vandermonde mat...
متن کاملConstruction of solitary solution and compacton-like solution by the variational iteration method using He's polynomials
Variational Iteration method using He's polynomials can be used to construct solitary solution and compacton-like solution for nonlinear dispersive equatioons. The chosen initial solution can be determined in compacton-like form or in solitary form with some compacton-like or solitary forms with some unknown parameters, which can be determined in the solution procedure. The compacton-like solu...
متن کاملNumerical solution of nonlinear Hammerstein integral equations by using Legendre-Bernstein basis
In this study a numerical method is developed to solve the Hammerstein integral equations. To this end the kernel has been approximated using the leastsquares approximation schemes based on Legender-Bernstein basis. The Legender polynomials are orthogonal and these properties improve the accuracy of the approximations. Also the nonlinear unknown function has been approximated by using the Berns...
متن کامل