On Fibonacci numbers which are elliptic Carmichael
نویسندگان
چکیده
Here, we show that if E is a CM elliptic curve with CM field different from Q( √ −1), then the set of n for which the nth Fibonacci number Fn is elliptic Carmichael for E is of asymptotic density zero.
منابع مشابه
On Fibonacci numbers which are elliptic Korselt numbers
Here, we show that if E is a CM elliptic curve with CM field Q( √ −d), then the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for Q( √ −d) (defined in the paper) is of asymptotic density zero.
متن کاملSome Properties of Fibonacci Numbers
We formalized some basic properties of the Fibonacci numbers using definitions and lemmas from [7] and [23], e.g. Cassini’s and Catalan’s identities. We also showed the connections between Fibonacci numbers and Pythagorean triples as defined in [31]. The main result of this article is a proof of Carmichael’s Theorem on prime divisors of prime-generated Fibonacci numbers. According to it, if we ...
متن کاملInfinitude of Elliptic Carmichael Numbers
In 1987, Gordon gave an integer primality condition similar to the familiar test based on Fermat’s little theorem, but based instead on the arithmetic of elliptic curves with complex multiplication. We prove the existence of infinitely many composite numbers simultaneously passing all elliptic curve primality tests assuming a weak form of a standard conjecture on the bound on the least prime in...
متن کاملA Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence
In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore, new sequences have been used in order to introduce a new class of series. All properties of the se...
متن کاملMixing Properties of Mixed Chebyshev Polynomials
1. Robert P. Backstrom. "On the Determination of the Zeros of the Fibonacci Sequence." The Fibonacci Quarterly 4, No. 4 (1966):313-322. 2. R. D. Carmichael. "On the Numerical Factors of the Arithmetic Forms a + 3." Annals of Mathematics9 2nd Ser. 15 (1913):30-70. 3. John H. Halton. "On the Divisibility Properties of Fibonacci Numbers." The Fibonacci Quarterly 4, No. 3 (1966):217-240. 4. D.H. Le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Periodica Mathematica Hungarica
دوره 72 شماره
صفحات -
تاریخ انتشار 2016