Bacteriorhodopsin is involved in halobacterial photoreception.

نویسندگان

  • S I Bibikov
  • R N Grishanin
  • A D Kaulen
  • W Marwan
  • D Oesterhelt
  • V P Skulachev
چکیده

The bacterio-opsin gene was introduced into a "blind" Halobacterium salinarium mutant that (i) lacked all the four retinal proteins [bacteriorhodopsin (BR), halorhodopsin, and sensory rhodopsins (SRs) I and II] and the transducer protein for SRI and (ii) showed neither attractant response to long wavelength light nor repellent response to short wavelength light. The resulting transformed cells acquired the capability to sense light stimuli. The cells accumulated in a light spot, demonstrating the BR-mediated orientation in spatial light gradients. As in wild-type cells, a decrease in the intensity of long wavelength light caused a repellent response by inducing reversals of swimming direction, but, in contrast to wild-type cells, a decrease in the intensity of short wavelength light also repelled the cells. An increase in light intensity evoked an attractant response (i.e., a transient suppression of spontaneous reversals). Signal processing times and adaptation kinetics were similar to the SRI-mediated reactions. However, compared to SR-mediated photoresponses, higher light intensities were necessary to induce the BR-mediated responses. The light sensitivity of the transformant was increased by adding 1 mM cyanide and decreased by the addition of arginine, agents that respectively reduce and increase the light-independent generation of the electrochemical potential difference of H+ ions (delta mu H+). A decrease in irradiance to an intensity that was still high enough to saturate BR-initiated delta mu H+ changes failed to induce the repellent effect, but the addition of a protonophorous uncoupler sensitized the cell to these light stimuli. The BR D96N mutant (Asp-96 is replaced by Asn) with decreased proton pump activity showed strongly reduced BR-mediated responses. Azide, which increases this mutant's H+ pump efficiency, increased the photosensitivity of the mutant cells. Moreover, azide diminished (i) the membrane potential decreasing and (ii) repellent effects of blue light added to the orange background illumination in this mutant. We conclude that the BR-mediated photoreception is due to the light-dependent generation of delta mu H+. Our data are consistent with the assumption that the H. salinarium cell monitors the membrane energization level with a "protometer" system measuring total delta mu H+ changes or its electric potential difference component.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformational flexibility of membrane proteins in electric fields. I. Ultraviolet absorbance and light scattering of bacteriorhodopsin in purple membranes.

Bacteriorhodopsin of halobacterial purple membranes exhibits conformational flexibility in high electric field pulses (1-30 x 10(5) V m(-1), 1-100 micros). High-field electric dichroism data of purple membrane suspensions indicate two kinetically different structural transitions within the protein; involving a rapid (approximately 1 micros) concerted change in the orientation of both retinal an...

متن کامل

Electrophysiological characterization of specific interactions between bacterial sensory rhodopsins and their transducers.

The halobacterial phototaxis receptors sensory rhodopsin I and II (SRI, SRII) enable the bacteria to seek optimal light conditions for ion pumping by bacteriorhodopsin and/or halorhodopsin. The incoming signal is transferred across the plasma membrane by means of receptor-specific transducer proteins that bind tightly to their corresponding photoreceptors. To investigate the receptor/transducer...

متن کامل

Photosensitive phosphoproteins in Halobacteria: regulatory coupling of transmembrane proton flux and protein dephosphorylation

A photoregulated reversible protein phosphorylation system controlled by the halobacterial rhodopsins was recently reported. The results presented in this paper identify the initial steps in the pathway from the absorption of light to the photoregulated protein phosphorylation and dephosphorylation reactions. Action spectrum, biochemical, and genetic analyses show that the proton pump bacterior...

متن کامل

A C-terminal truncation results in high-level expression of the functional photoreceptor sensory rhodopsin I in the archaeon Halobacterium salinarium.

Expression of the gene encoding the halobacterial photoreceptor sensory rhodopsin I (SRI), sopI, was studied by means of homologous gene targeting. A sopI- Halobacterium salinarium mutant strain was constructed by homologous replacement of sopI with a novobiocin-resistant gyrB from Haloferax Aa 2.2. Cells bearing gyrB were resistant to novobiocin, indicating that the Haloferax gene is functiona...

متن کامل

Bioorganic chemistry of rhodopsins

Bacteriorhodopsin and rhodopsin are integral membrane proteins containing retinal as a light sensitive group. Light energy is used by halophilic microorganisms for ATP synthesis and other vital functions. In visual cells light absorption activates several enzymes in the rod outer segment. Comparative study of the structural organization of these proteins was necessary to elucidate their functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 90 20  شماره 

صفحات  -

تاریخ انتشار 1993