Sustained Delivery Growth Factors with Polyethyleneimine‐Modified Nanoparticles Promote Embryonic Stem Cells Differentiation and Liver Regeneration

نویسندگان

  • Meiyan Wang
  • Xiaomei Yang
  • Peng Zhang
  • Lei Cai
  • Xibin Yang
  • Youwei Chen
  • Yuanya Jing
  • Jilie Kong
  • Xiaowei Yang
  • Fang‐Lin Sun
چکیده

Stem-cell-derived hepatocyte transplantation is considered as a potential method for the therapy of acute and chronic liver failure. However, the low efficiency of differentiation into mature and functional hepatocytes remains a major challenge for clinical applications. By using polyethyleneimine-modified silica nanoparticles, this study develops a system for sustained delivery of growth factors, leading to induce hepatocyte-like cells (iHeps) from mouse embryonic stem cells (mESCs) and improve the expression of endoderm and hepatocyte-specific genes and proteins significantly, thus producing a higher population of functional hepatocytes in vitro. When transplanted into liver-injured mice after four weeks, mESC-derived definitive endoderm cells treated with this delivery system show higher integration efficiency into the host liver, differentiated into iHeps in vivo and significantly restored the injured liver. Therefore, these findings reveal the multiple advantages of functionalized nanoparticles to serve as efficient delivery platforms to promote stem cell differentiation in the regenerative medicine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

Bone Tissue Engineering: a Mini-Review

Despite advances in bone tissue engineering, auto grafts from intra-oral or extra-oral donor sites are still the gold standard for treatment of large craniomaxillofacial defects. Biomaterial development, application of growth factor, and stem cells, open new gateway to bone regeneration studies, but real translation from bench to bedside have not yet happened. In this review article, a number o...

متن کامل

Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles.

Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem ...

متن کامل

Controlled release of drugs in electrosprayed nanoparticles for bone tissue engineering.

Generating porous topographic substrates, by mimicking the native extracellular matrix (ECM) to promote the regeneration of damaged bone tissues, is a challenging process. Generally, scaffolds developed for bone tissue regeneration support bone cell growth and induce bone-forming cells by natural proteins and growth factors. Limitations are often associated with these approaches such as imprope...

متن کامل

Composite Nanoscaffolds Modified with Bio-ceramic Nanoparticles (Zn2SiO4) Prompted Osteogenic Differentiation of Human Induced Pluripotent Stem Cells

Nanofiber scaffolds and bio-ceramic nanoparticles have been widely used in bone tissue engineering. The use of human induced pluripotent stem cells (hiPSCs) on this scaffold can be considered as a new approach in the differentiation of bone tissue. In the present study, a polyaniline-gelatin-polycaprolactone (PANi-GEL-PCL) composite nanoscaffold was made by electrospinning and modified superfic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016