Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia.

نویسندگان

  • Aaron A Hall
  • Colin Young
  • Michael Bodo
  • Richard T Mahon
چکیده

Oxygen is the most widely used therapeutic strategy to prevent and treat decompression sickness (DCS). Oxygen prebreathe (OPB) eliminated DCS in 20-kg swine after rapid decompression from saturation at 60 feet of seawater (fsw). However, hyperbaric oxygen (HBO) has risks. As oxygen partial pressure increases, so do its toxic effects. Central nervous system (CNS) oxygen toxicity is the most severe side effect, manifesting as seizure. An adjunctive therapeutic is needed to extend OPB strategies to deeper depths and prevent/delay seizure onset. The Food and Drug Administration-approved anti-epileptic vigabatrin has prevented HBO-induced seizures in rats up to 132 fsw. This study aimed to confirm the rat findings in a higher animal model and determine whether acute high-dose vigabatrin evokes retinotoxicity symptoms seen with chronic use clinically in humans. Vigabatrin dose escalation studies were conducted 20-kg swine exposed to HBO at 132 or 165 fsw. The saline group had seizure latencies of 7 and 11 min at 165 and 132 fsw, respectively. Vigabatrin at 180 mg/kg significantly increased latency (13 and 27 min at 165 and 132 fsw, respectively); 250 mg/kg abolished seizure activity at all depths. Functional electroretinogram and histology of the retinas showed no signs of retinal toxicity in any of the vigabatrin=treated animals. In the 250 mg/kg group there was no evidence of CNS oxygen toxicity; however, pulmonary oxygen toxicity limited HBO exposure. Together, the findings from this study show that vigabatrin therapy is efficacious at preventing CNS oxygen toxicity in swine, and a single dose is not acutely associated with retinotoxicity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study Of Interaction of Glutathione, Vitamin C and Vitamin E Under Hyperbaric Oxygen

In order to study the interaction of glutathione, vitamin C and vitamin E under hyperoxia (95 % oxygen) and hyperbaric oxygen (2.5 atmospheric pressure), 20 days old male Guinea pigs were fed with basal vitamin C free diet, while receiving a vitamin C supplement of either high concentration (50 mg/day) or low concentration (1 mg/day) for two weeks. Animals were than exposed to hyperoxia and hyp...

متن کامل

A potential early physiological marker for CNS oxygen toxicity: hyperoxic hyperpnea precedes seizure in unanesthetized rats breathing hyperbaric oxygen.

Hyperbaric oxygen (HBO(2)) stimulates presumptive central CO2-chemoreceptor neurons, increases minute ventilation (V(min)), decreases heart rate (HR) and, if breathed sufficiently long, produces central nervous system oxygen toxicity (CNS-OT; i.e., seizures). The risk of seizures when breathing HBO(2) is variable between individuals and its onset is difficult to predict. We have tested the hypo...

متن کامل

The excitement of multiple noradrenergic cell groups in the rat brain related to hyperbaric oxygen seizure.

The mechanism of oxygen toxicity for central nervous system and hyperbaric oxygen (HBO) seizure has not been clarified. Noradrenergic cells in the brain may contribute to HBO seizure. In this study, we defined the activation of noradrenergic cells during HBO exposure by c-fos immunohistochemistry. Electroencephalogram electrodes were pre-implanted in all animals under general anesthesia. In HBO...

متن کامل

Hyperbaric Oxygen Therapy (HBO), DNA Damage and Tumor Progression - A Survival Study on a Mice Tumor Model

HBO has been used as an adjuvant to chemo (CT) or radiotherapy (RT) in cancer; however, in our previous work on survival study in small animal mice model, we reported cancer enhancing effect after cessation of the HBO therapy. The present study was designed to understand the underlying molecular mechanism that may be linked to cancer enhancing phenomenon. Tumor bearing C3H mice were subjected t...

متن کامل

Phosphodiesterase-5 inhibitors oppose hyperoxic vasoconstriction and accelerate seizure development in rats exposed to hyperbaric oxygen.

Oxygen is a potent cerebral vasoconstrictor, but excessive exposure to hyperbaric oxygen (HBO(2)) can reverse this vasoconstriction by stimulating brain nitric oxide (NO) production, which increases cerebral blood flow (CBF)-a predictor of O(2) convulsions. We tested the hypothesis that phosphodiesterase (PDE)-5 blockers, specifically sildenafil and tadalafil, increase CBF in HBO(2) and acceler...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 115 6  شماره 

صفحات  -

تاریخ انتشار 2013