Changes in N-Transforming Archaea and Bacteria in Soil during the Establishment of Bioenergy Crops
نویسندگان
چکیده
Widespread adaptation of biomass production for bioenergy may influence important biogeochemical functions in the landscape, which are mainly carried out by soil microbes. Here we explore the impact of four potential bioenergy feedstock crops (maize, switchgrass, Miscanthus X giganteus, and mixed tallgrass prairie) on nitrogen cycling microorganisms in the soil by monitoring the changes in the quantity (real-time PCR) and diversity (barcoded pyrosequencing) of key functional genes (nifH, bacterial/archaeal amoA and nosZ) and 16S rRNA genes over two years after bioenergy crop establishment. The quantities of these N-cycling genes were relatively stable in all four crops, except maize (the only fertilized crop), in which the population size of AOB doubled in less than 3 months. The nitrification rate was significantly correlated with the quantity of ammonia-oxidizing archaea (AOA) not bacteria (AOB), indicating that archaea were the major ammonia oxidizers. Deep sequencing revealed high diversity of nifH, archaeal amoA, bacterial amoA, nosZ and 16S rRNA genes, with 229, 309, 330, 331 and 8989 OTUs observed, respectively. Rarefaction analysis revealed the diversity of archaeal amoA in maize markedly decreased in the second year. Ordination analysis of T-RFLP and pyrosequencing results showed that the N-transforming microbial community structures in the soil under these crops gradually differentiated. Thus far, our two-year study has shown that specific N-transforming microbial communities develop in the soil in response to planting different bioenergy crops, and each functional group responded in a different way. Our results also suggest that cultivation of maize with N-fertilization increases the abundance of AOB and denitrifiers, reduces the diversity of AOA, and results in significant changes in the structure of denitrification community.
منابع مشابه
Cultivation Effect of Chitinase-Transgenic Cotton on Functional Bacteria and Fungi in Rhizosphere and Bulk Soil
Background: In consideration for the increasing widespread use of genetically modified (GM) crops, one of the important issues for assessment is the effect of GM crops on soil microbial communities Objectives: In this study, T2 chitinase-transgenic cotton (line #57) and its non-transgenic line were investigated for bacterial and fungal dynamics...
متن کاملInvestigating the effect of flood spreading on some physical and chemical soil properties
Flood spreading is among preventing method from damage of deluge, especially perishing of water and soil in latrine basins of arid and semiarid regions. Accumulation of sediments on the flood spreads regions lead to changes in soil fertility, revival and support of plant covering and controlling of desertification and change in physicochemical properties of soil in these regions. In order to me...
متن کاملDiversity of bacteria and archaea in the rhizosphere of bioenergy crop Jatropha curcas
Plant-microbial interaction in rhizosphere plays vital role in shaping plant's growth and ecosystem function. Most of the rhizospheric microbial diversity studies are restricted to bacteria. In natural ecosystem, archaea also constitutes a major component of the microbial population. However, their diversity is less known compared to bacteria. Experiments were carried out to examine diversity o...
متن کاملRoot biomass and soil carbon response to growing perennial grasses for bioenergy
Background: Dedicated bioenergy crops such as switchgrass (Panicum virgatum L.), miscanthus [Miscanthus x giganteus (Mxg)], indiangrass [Sorghastrum nutans (L.) Nash], and big bluestem (Andropogon gerardii Vitman) can provide cellulosic feedstock for biofuel production while maintaining or improving soil and environmental quality. To better understand bioenergy crop effects on soils, we studied...
متن کاملSoil nutrient removal by four potential bioenergy crops: Zea mays, Panicum virgatum, Miscanthus×giganteus, and prairie
Replacing annual row crops with perennial grasses for bioenergy represents a landscape-level change in species composition, with the potential to impact annual soil nutrient removal on a regional scale. In this study we measured the concentration of ten essential nutrients in harvested material from three potential perennial bioenergy crops: Panicum virgatum L., Miscanthus giganteus, and a rees...
متن کامل