A Computational Study Using Time Reversal Focusing for Hyperthermia Treatment Planning

نویسندگان

  • Pegah Takook
  • Hana D. Trefná
  • Xuezhi Zeng
  • Andreas Fhager
  • Mikael Persson
چکیده

In hyperthermia treatment planning (HTP) the goal is to find the amplitudes and phases of antennas in the applicator to efficiently heat the tumor. To do this prior information regarding tumor characteristics such as the size, position and geometry, in addition to an exact model of the hyperthermia applicator is needed. Based on this information, the optimal frequency of operation can be determined. In this paper the optimum frequency for hyperthermia treatment based on the tumor and applicator characteristics, using time reversal as the focusing technique, is studied. As prior information, we consider tumor size and position, the number of the antennas in the applicator and the frequency characteristics. The obtained optimal frequency range is found using hyperthermia quality indicator values calculated from simulations. We also determine the optimum position of the virtual source in the initial step of the time reversal method to increase the quality of the treatment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-reversal acoustics in biomedical engineering.

Time reversal is a very powerful method for focusing through complex and heterogeneous media and shows very promising results in biomedical applications. In this paper, we review some of the main applications investigated during the past decade. An iterative implementation of the time-reversal process allows tracking gallstones in real time during lithotripsy treatments. In this application dom...

متن کامل

An Improved Time-Reversal-Based Target Localization for Through-Wall Microwave Imaging

Recently, time reversal (TR) method, due to its high functionality in heterogeneous media has been widely employed in microwave imaging (MI) applications. One of the applications turning into a great interest is through-wall microwave imaging (TWMI). In this paper, TR method is applied to detect and localize a target obscured by a brick wall using a numerically generated data. Regarding this, i...

متن کامل

Effect of 3 MHz ultrasound radiation on retinoblastoma cell line

Ultrasound hyperthermia is a new way to treat cancerous tumors. Retinoblastoma is one of the most common malignant ocular tumors in children. Since hyperthermia is an effective treatment for cancer cells, the effect of hyperthermia on retinoblastoma cells was investigated in this study. The purpose of this study was to determine the effect of duration of 3 MHz ultrasound hyperthermia on Y79 cel...

متن کامل

MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method

BACKGROUND Ultrasound induced hyperthermia is a useful adjuvant to radiation therapy in the treatment of prostate cancer. A uniform thermal dose (43 degrees C for 30 minutes) is required within the targeted cancerous volume for effective therapy. This requires specific ultrasound phased array design and appropriate thermometry method. Inhomogeneous, acoustical, three-dimensional (3D) prostate m...

متن کامل

Thermal dosimetry characteristics of deep regional heating of non-muscle invasive bladder cancer.

PURPOSE The aim of this paper is to report thermal dosimetry characteristics of external deep regional pelvic hyperthermia combined with intravesical mitomycin C (MMC) for treating bladder cancer following transurethral resection of bladder tumour, and to use thermal data to evaluate reliability of delivering the prescribed hyperthermia dose to bladder tissue. MATERIALS AND METHODS A total of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017