On the parameters affecting dual-target-function evaluation of single-particle selection from cryo-electron micrographs

نویسندگان

  • Zhou Yu
  • Wei Li Wang
  • Luis R. Castillo-Menendez
  • Joseph Sodroski
  • Youdong Mao
چکیده

In the analysis of frozen hydrated biomolecules by single-particle cryo-electron microscopy, template-based particle picking by a target function called fast local correlation (FLC) allows a large number of particle images to be automatically picked from micrographs. A second, independent target function based on maximum likelihood (ML) can be used to align the images and verify the presence of signal in the picked particles. Although the paradigm of this dual-target-function (DTF) evaluation of single-particle selection has been practiced in recent years, it remains unclear how the performance of this DTF approach is affected by the signal-to-noise ratio of the images and by the choice of references for FLC and ML. Here we examine this problem through a systematic study of simulated data, followed by experimental substantiation. We quantitatively pinpoint the critical signal-to-noise ratio (SNR), at which the DTF approach starts losing its ability to select and verify particles from cryo-EM micrographs. A Gaussian model is shown to be as effective in picking particles as a single projection view of the imaged molecule in the tested cases. For both simulated micrographs and real cryo-EM data of the 173-kDa glucose isomerase complex, we found that the use of a Gaussian model to initialize the target functions suppressed the detrimental effect of reference bias in template-based particle selection. Given a sufficient signal-to-noise ratio in the images and the appropriate choice of references, the DTF approach can expedite the automated assembly of single-particle data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-target function validation of single-particle selection from low-contrast cryo-electron micrographs

Weak-signal detection and single-particle selection from low-contrast micrographs of frozen hydrated biomolecules by cryo-electron microscopy (cryoEM) presents a practical challenge. Cryo-EM image contrast degrades as the size of biomolecules of structural interest decreases. When the image contrast falls into a range where the location or presence of single particles becomes ambiguous, a need ...

متن کامل

Automatic post-picking improves particle image detection from Cryo-EM micrographs

Cryo-electron microscopy (cryo-EM) studies using single particle reconstruction is extensively used to reveal structural information of macromolecular complexes. Aiming at the highest achievable resolution, state of the art electron microscopes acquire thousands of highquality images. Having collected these data, each single particle must be detected and windowed out. Several fullyor semi-autom...

متن کامل

A binary segmentation approach for boxing ribosome particles in cryo EM micrographs.

Three-dimensional reconstruction of ribosome particles from electron micrographs requires selection of many single-particle images. Roughly 100,000 particles are required to achieve approximately 10 A resolution. Manual selection of particles, by visual observation of the micrographs on a computer screen, is recognized as a bottleneck in automated single-particle reconstruction. This paper desc...

متن کامل

Structure of HIV-1 Capsid Assemblies by Cryo-electron Microscopy and Iterative Helical Real-space Reconstruction

Cryo-electron microscopy (cryo-EM), combined with image processing, is an increasingly powerful tool for structure determination of macromolecular protein complexes and assemblies. In fact, single particle electron microscopy and two-dimensional (2D) electron crystallography have become relatively routine methodologies and a large number of structures have been solved using these methods. At th...

متن کامل

Adaptive nonparametric detection in cryo-electron microscopy

Cryo-electron microscopy (cryo-EM) is an emerging experimental method to characterize the structure of large biomolecular assemblies. Single particle cryo-EM records 2D images (so-called micrographs) of projections of the three-dimensional particle, which need to be processed to obtain the threedimensional reconstruction. A crucial step in the reconstruction process is particle picking which in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015