Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO

نویسنده

  • J. Redemann
چکیده

The 14-channel Ames Airborne Tracking Sunphotometer (AATS) was operated on a Jetstream 31 (J31) aircraft in March 2006 during MILAGRO/INTEX-B (Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment). We compare AATS retrievals of spectral aerosol optical depth (AOD) and related aerosol properties with corresponding spatially coincident and temporally near-coincident measurements acquired by the MODIS-Aqua and MODIS-Terra satellite sensors. These comparisons are carried out for the older MODIS Collection 4 (C4) and the new Collection 5 (C5) data set, the latter representing a reprocessing of the entire MODIS data set completed during 2006 with updated calibration and aerosol retrieval algorithm. Our analysis yields a direct, validated assessment of the differences between select MODIS C4 and C5 aerosol retrievals. Our analyses of 37 coincident observations by AATS and MODISTerra and 18 coincident observations between AATS and MODIS-Aqua indicate notable differences between MODIS C4 and C5 and between the two sensors. For MODIS-Terra, we find an average increase in AOD of 0.02 at 553 nm and 0.01 or less at the shortwave infrared (SWIR) wavelengths. The change from C4 to C5 results in less good agreement with the AATS derived spectral AOD, with average differences at 553 nm increasing from 0.03 to 0.05. For MODISAqua, we find an average increase in AOD of 0.008 at 553 nm, but an increase of nearly 0.02 at the SWIR wavelengths. The change from C4 to C5 results in slightly less good agreement to the AATS derived visible AOD, with average differences at 553 nm increasing from 0.03 to 0.04. However, at Correspondence to: J. Redemann ([email protected]) SWIR wavelengths, the changes from C4 to C5 result in improved agreement between MODIS-Aqua and AATS, with the average differences at 2119 nm decreasing from −0.02 to −0.003. Comparing the Angstrom exponents calculated from AOD at 553nm and 855nm, we find an increased rms difference from AATS derived Angstrom exponents in going from C4 to C5 for MODIS-Terra, and a decrease in rms difference, hence an improvement, for the transition from C4 to C5 in MODIS-Aqua. Combining the AATS retrievals with in situ measurements of size-dependent aerosol extinction, we derive a suborbital measure of the aerosol submicron fraction (SMF) of AOD and compare it to MODIS retrievals of aerosol fine mode fraction (FMF). Our analysis shows a significant rms-difference between the MODIS-Terra FMF and suborbitally-derived SMF of 0.17 for both C4 and C5. For MODIS-Aqua, there is a slight improvement in the transition from C4 to C5, with the rms-difference from AATS dropping from 0.23 to 0.16. The differences in MODIS C4 and C5 AOD in this limited data set can be traced to changes in the reflectances input to the aerosol retrievals. An extension of the C4-C5 comparisons from the area along the J31 flight track to a larger study region between 18–23 N and 93–100 W on each of the J31 flight days supports the finding of significant differences between MODIS C4 and C5.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testing aerosol properties in MODIS Collection 4 and 5

Testing aerosol properties in MODIS (MOD04/MYD04) Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO J. Redemann, Q. Zhang, J. Livingston, P. Russell, Y. Shinozuka, A. Clarke, R. Johnson, and R. Levy Bay Area Environmental Research Institute, Sonoma, CA, USA SRI International, Menlo Park, CA, USA NASA Ames Research Center, Moffett Field, CA, USA ORAU/ NASA Ames Rese...

متن کامل

A new method for deriving aerosol solar radiative forcing and its first application within MILAGRO/INTEX-B

We introduce a method for deriving aerosol spectral radiative forcing along with single scattering albedo, asymmetry parameter, and surface albedo from airborne vertical profile measurements of shortwave spectral irradiance and spectral aerosol optical thickness. The new method complements the traditional, direct measurement of aerosol radiative forcing efficiency from horizontal flight legs be...

متن کامل

Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI) on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD) from spatially coincident and temporally nearcoincident measurements by the Ozone Monitoring Instrument (OMI) aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO...

متن کامل

Aerosol spectral absorption in the Mexico City area -- MILAGRO/INTEX B

Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B R. W. Bergstrom, K. S. Schmidt, O. Coddington, P. Pilewskie, H. Guan, J. M. Livingston, J. Redemann, and P. B. Russell Bay Area Environmental Research Institute, Sonoma, CA, USA Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA SRI International, Me...

متن کامل

Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: spring 2006 INTEX-B campaign overview and first results

Intercontinental Chemical Transport ExperimentB (INTEX-B) was a major NASA (Acronyms are provided in Appendix A.) led multi-partner atmospheric field campaign completed in the spring of 2006 (http://cloud1.arc.nasa.gov/intex-b/). Its major objectives aimed at (i) investigating the extent and persistence of the outflow of pollution from Mexico; (ii) understanding transport and evolution of Asian...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009