Disease Mapping with Spatially Uncertain Data
نویسندگان
چکیده
Objective Uncertainty regarding the location of disease acquisition, as well as selective identification of cases, may bias maps of risk. We propose an extension to a distance-based mapping method (DBM) that incorporates weighted locations to adjust for these biases. We demonstrate this method by mapping potential drug-resistant tuberculosis (DRTB) transmission hotspots using programmatic data collected in Lima, Peru.
منابع مشابه
Longitudinal Brain MRI Analysis with Uncertain Registration
In this paper we propose a novel approach for incorporating measures of spatial uncertainty, which are derived from non-rigid registration, into spatially normalised statistics. Current approaches to spatially normalised statistical analysis use point-estimates of the registration parameters. This is limiting as the registration will rarely be completely accurate, and therefore data smoothing i...
متن کاملApplication of remote sensing and geographical information system in mapping land cover of the national park
The study was conducted with the objective of mapping landscape cover of Nechsar National park in Ethiopia to produce spatially accurate and timely information on land use and changing pattern. Monitoring provides the planners and decision-makers with required information about the current state of its development and the nature of changes that have occurred. Remote sensing and Geographical Inf...
متن کاملAssessment of Neonate's Congenital Hypothyroidism Pattern Using Poisson Spatio-temporal Model in Disease Mapping under the Bayesian Paradigm during 2011-18 in Guilan, Iran
Background: Congenital Hypothyroidism (CH) is one of the reasons for mental retardation and defective growth in neonates. It can be treated if it is diagnosed early. The congenital hypothyroidism can be diagnosed using newborn screening in the first days after birth. Disease mapping helps to identify high-risk areas of the disease. This study aimed to evaluate the pattern of CH using the Poisso...
متن کاملGeostatistically estimation and mapping of forest stock in a natural unmanaged forest in the Caspian region of Iran
Estimation and mapping of forest resources are preconditions for management, planning and research. In this study, we applied kriging interpolation of geostatistics for estimation and mapping of forest stock at-tributes in a natural, uneven-aged, unmanaged forest in the Caspian region of northern Iran. The site of the study has an area of 516 ha and an elevation that ranges from 1100 to 1450 m ...
متن کاملOn Uncertain Probabilistic Data Modeling
Uncertainty in data is caused by various reasons including data itself, data mapping, and data policy. For data itself, data are uncertain because of various reasons. For example, data from a sensor network, Internet of Things or Radio Frequency Identification is often inaccurate and uncertain because of devices or environmental factors. For data mapping, integrated data from various heterogono...
متن کامل