Evaluation of an image-based algorithm for quantitative spectral CT applications
نویسندگان
چکیده
In this paper we describe and evaluate an image-based spectral CT method. Its central formula expresses measured CT data as a spectral integration of the spectral attenuation coefficient multiplied by a Local Weighting Function (LWF). The LWF represents the local energy weighting in the image domain, taking into account the system and reconstruction properties and the object self attenuation. A generalized image-based formulation of spectral CT algorithms is obtained, with no need for additional corrections of e.g. beam hardening. The iterative procedure called Local Spectral Reconstruction (LSR) yields both the mass attenuation coefficients of the object and a representation of the LWF. The quantitative accuracy and precision of the method is investigated in several applications, including beam hardening correction, attenuation correction for SPECT/CT and PET/CT and a direct identification of spectral attenuation functions using the LWF result is demonstrated. In all applications the ground truth of the objects is reproduced with a quantitative accuracy in the sub-percent to two percent range. An exponential convergence behavior of the iterative procedure is observed, with one to two iteration steps as a good compromise between quantitative accuracy and precision. We conclude that the method can be used to perform image-based spectral CT reconstructions with quantitative accuracy. Existing algorithms benefit from the intrinsic treatment of beam hardening and system properties. Novel algorithms are enabled to directly compare material model functions to spectral measurement data.
منابع مشابه
Shearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملQuantitative image-based spectral reconstruction for computed tomography.
Computed tomography (CT) devices are routinely employed to obtain three-dimensional images of the human body. The reconstructed CT numbers represent weighted x-ray attenuation coefficients. Their spectral weighting is influenced by the selected x-ray source spectrum, the detector characteristics, and the attenuating object itself. The quantitative ground truth of the scanned object is given by ...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملFusion of Panchromatic and Multispectral Images Using Non Subsampled Contourlet Transform and FFT Based Spectral Histogram (RESEARCH NOTE)
Image fusion is a method for obtaining a highly informative image by merging the relative information of an object obtained from two or more image sources of the same scene. The satellite cameras give a single band panchromatic (PAN) image with high spatial information and multispectral (MS) image with more spectral information. The problem exists today is either PAN or MS image is available fr...
متن کاملQuantitative SPECT and planar 32P bremsstrahlung imaging for dosimetry purpose –An experimental phantom study
Background: In this study, Quantitative 32P bremsstrahlung planar and SPECT imaging and consequent dose assessment were carried out as a comprehensive phantom study to define an appropriate method for accurate Dosimetry in clinical practice. Materials and Methods: CT, planar and SPECT bremsstrahlung images of Jaszczak phantom containing a known activity of 32P were acquired. In addition, Phanto...
متن کامل