Time-Induced Progressive Alteration of Kir Current in Cerebral Smooth Muscle Cells of Stroke-Prone Spontaneously Hypertensive Rats
نویسندگان
چکیده
We investigated the involvement of potassium inward rectifier current (Kir) impairment in smooth muscle cells of cerebral arteries under the condition of increased susceptibility of stroke, in spontaneously hypertensive stroke-prone (SHRsp) rats compared to spontaneously hypertensive (SHR) ones as well as to controls (WKY). Kir current was studied with whole-cell patch-clamp techniques on freshly isolated single smooth muscle cells (SMC) of middle cerebral artery (MCA) from SHRsp, SHR, and WKY male rats (are range 12-32 weeks). A significant and progressive Kir current density reduction was observed on SMC of SHRsp rats from the 22nd week of age on, as opposed to the Kir current density stability observed over the same time in the SMC of WKY and SHR rats. The Kir density alteration was correlated to the age of the SHRsp animals. These results suggest that in the cerebral vascular smooth muscle cells of SHRsp rats, there is a progressive Kir channel impairment, leading to a reduction of Kir current density. This impairment may underpin a lack of vasodilation of the MCA and be implicated in the stroke-proneness observed on SHRsp animals.
منابع مشابه
Studies of hypertension-induced vascular hypertrophy in cultured smooth muscle cells from spontaneously hypertensive rats.
Mechanisms of vascular hypertrophy induced by hypertension were studied in cultured aortic smooth muscle cells from spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) and compared with those from normotensive Wistar-Kyoto (WKY) rats. Fetal calf serum-stimulated ornithine decarboxylase (ODC) activity of cultured smooth muscle cells was greater in SHR and SHRSP than in WKY. Beta- ...
متن کاملVitamin E Derivative Alpha-Tocotrienol Failed to Show Neuroprotective Effects after Embolic Stroke in Rats
Objective(s) Previous studies have demonstrated that pretreatment with alpha-tocotrienol (a-TCT) can reduce ischemic damage in mice following middle cerebral artery (MCA) occlusion. It is also reported to decrease stroke- dependent brain tissue damage in 12-Lox-deficient mice and spontaneously hypertensive rats. In the present study, the neuroprotective effects of a-TCT and rosiglitazone (RGZ)...
متن کاملLipid bilayer in genetic hypertension.
Membrane microviscosity, phospholipid composition, and turnover were measured in cultured vascular smooth muscle cells isolated from mesenteric arteries of stroke-prone spontaneously hypertensive and age-matched, normotensive Wistar-Kyoto rats. Membrane microviscosity, measured with fluorescence polarization, revealed greater microviscosity (lower fluidity) of the membranes isolated from smooth...
متن کاملCalcium current in smooth muscle cells from normotensive and genetically hypertensive rats.
Genetic hypertension results from numerous phenotypic expressions. We hypothesized that increased calcium current in vascular smooth muscle of genetically hypertensive animals is partly responsible for observed increases in agonist sensitivity, contractility, and calcium influx. Using adult, spontaneously hypertensive stroke-prone rats (SHRSP) and normotensive Wistar-Kyoto (WKY) controls from a...
متن کاملStroke development in stroke-prone spontaneously hypertensive rats alters the ability of cerebrovascular muscle to utilize internal Ca2+ to elicit constriction.
BACKGROUND AND PURPOSE The ability of middle cerebral arteries (MCAs) to utilize intracellular smooth muscle (SM) Ca2+ to produce constriction in response to pressure and agonists was assessed in relation to hemorrhagic stroke development in Wistar-Kyoto stroke-prone (SHRSP) and stroke-resistant (srSHR) spontaneously hypertensive rats. METHODS MCAs were studied with the use of a pressure myog...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013