A reappraisal of regional surface wave tomography
نویسندگان
چکیده
S U M M A R Y A three-stage inversion scheme for surface wave tomography working with multimode phase dispersion as a function of frequency provides a means of combining a wide range of data in a common framework. The phase average approximation is applied directly to phase slowness and there is no need to invoke perturbation arguments for the interpretation of path-averaged velocity models derived from waveform inversion of surface waves. By treating such wave speed profiles as summaries of path specific dispersion behaviour it is possible not only to combine results from different style of inversion but also to provide maximum exploitation of Love and Rayleigh wave information. Inversions of all suitable waveforms can be undertaken in terms of isotropic models. Dispersion information from all paths is combined to form multimode phase speed distributions as a function of frequency in linearized inversion which takes account of path bending and finite frequency effects. The final inversion for 3-D wave speed structure is based on a cellular inversion of the multimode frequency dispersion including angular effects in terms of a local stratified model including anisotropy. The smoothing from inclusion of finite frequency effects and damping of the linearized inversion for the phase speed distributions will control the smoothness of the 3-D shear wave speed model.
منابع مشابه
Velocity Inversion with an Iterative Normal Incidence Point (NIP) Wave Tomography with Model-Based Common Diffraction Surface (CDS) Stack
Normal Incidence Point (NIP) wave tomography inversion has been recently developed to generate a velocity model using Common Reflection Surface (CRS) attributes, which is called the kinematic wavefield attribute. In this paper, we propose to use the model based Common Diffraction Surface (CDS) stack method attributes instead of data driven Common Reflection Surface attributes as an input data p...
متن کامل2-D Surface Wave Tomography in the Northwest Part of the Iranian Plateau
In this study, we obtained two-dimensional tomography maps of the Rayleigh wave group velocity for the northwest part of the Iranian Plateau in order to investigate the structure of the crust and the uppermost mantle of NW Iran. To do this, the local earthquake data during the period 2006-2013, recorded by the 10 broadband stations of the Iranian seismic network (INSN) were used. After the prel...
متن کاملI Nstitute for M Athematics and Its a Pplications
In recent years surface waves have found wide applications in various seismological studies of a very different scale. We present a brief description of our recent results in regional surface wave tomography of continents, in applying these results for nuclear tests monitoring purposes, and in studying shear-velocity structure of soft sediments below sea bottom. 4:20–4:50 Edo Nyland Univ. of Al...
متن کاملSurface Wave Tomography of China from Ambient Seismic Noise Correlation
We perform ambient noise tomography of China using the data from the China National Seismic Network and surrounding global and regional stations. For most of the station pairs, we retrieve good Rayleigh waveforms from ambient noise correlations using 18-months of continuous data at all distance ranges across the entire region (over 5000 km) and for periods from 70 s down to about 8 s. We obtain...
متن کاملOn the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography
[1] Seismic anisotropy provides essential constraints on mantle dynamics and continental evolution. One particular question concerns the depth distribution and coherence of azimuthal anisotropy, which is key for understanding force transmission between the lithosphere and asthenosphere. Here, we reevaluate the degree of coherence between the predicted shear wave splitting derived from tomograph...
متن کامل