Important Consequences of the Exponent 3/2 for Pyramidal/Conical Indentations-New Definitions of Physical Hardness and Modulus

ثبت نشده
چکیده

The now physically founded exponent 3/2 that governs the relation of normal force to depth3/2 in conical/pyramidal indentation is a physically founded (FN = k h 3/2). Strictly linear plots obtain non-iterated penetration resistance k (mN/ μm3/2) as slope, initial effects (including tip rounding), adhesion energy, and phase transitions with their transformation energy and activation energy. The reason for the failing of the Sneddon theory, claiming wrong exponent 2 (as do ABAQUS or ANSYS finite element simulations) is their neglect of long-range effects by shearing. Previous undue trials to rationalize the non-occurrence of exponent 2 are polynomial fittings and "best or variable exponent" iterations for curve fittings that lose all unique information from the loading curve. Also ISO 14577 unloading hardness HISO and reduced elastic modulus Er-ISO lack physical reality. They are redefined to physical dimensions as new indentation parameters Hphys and Er-phys. For the first time physically sound indentation hardness Hphys is obtained without iterations solely from loading curves. Also all mechanical indentation parameters relying on Sneddon's exponent 2 are unphysical. They require redefinition with new dimensions. This applies also to visco-elastic-plastic parameters in a recent NIST tutorial. The present ISO-standards create dilemma with physics. But the risk from using wrong mechanical parameters against physics is dangerous, subject to change. *Corresponding author: Kaupp G, University of Oldenburg, Diekweg 15 D-26188 Edewecht, Germany, Tel: 4944868386; Fax: 494486920704; E-mail: [email protected] Received June 24, 2016; Accepted September 27, 2016; Published October 09, 2016 Citation: Kaupp G (2016) Important Consequences of the Exponent 3/2 for Pyramidal/Conical Indentations-New Definitions of Physical Hardness and Modulus. J Material Sci Eng 5: 285. doi:10.4172/2169-0022.1000285 Copyright: © 2016 Kaupp G. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ISO Standard 14577 for Mechanics Violates the First Energy Law and Denies Physical Dimensions

The basis of the quantitative conical/pyramidal (nano) indentation, without fittings, iterations, or simulations, is the physically founded FN=k h 3/2 relation. The constant k (penetration resistance, mN/μm3/2) from linear plot with excellent regression discards initial surface effects, identifies important phase transformation onsets, conversion and activation energies, and reveals errors. The...

متن کامل

Mechanical Properties of Evaporated Gold Films. Hard Substrate Effect Correction

Nanoindentation tests using the Berkovich indenter tip were performed on 50 and 200 nm thick polycrystalline gold films deposited on hard substrates. Gold film hardness increased with the indentation depth due to the influence of the substrate. A procedure based on the Joslin-Oliver method was introduced to correct for the substrate effect. The method utilizes the fact that the measured elastic...

متن کامل

Finite element analysis of elastic-plastic solids under Vickers indentation: surface deformation

Finite element modeling has been used to study the development of surface deformation during indentation with a Vickers indenter. A wide range of materials with different elastic modulus and yield stresses are examined. Results show that in a pyramidal indentation process, for a perfectly plastic material, sinking-in during loading can change to pile-up in unloading. This phenomenon depends on ...

متن کامل

The physical foundation of F N = kh 3/2 for conical/pyramidal indentation loading curves

A physical deduction of the FN = kh(3/2) relation (where FN is normal force, k penetration resistance, and h penetration depth) for conical/pyramidal indentation loading curves has been achieved on the basis of elementary mathematics. The indentation process couples the productions of volume and pressure to the displaced material that often partly plasticizes due to such pressure. As the pressu...

متن کامل

Challenge of Industrial High-load One-point Hardness and of Depth Sensing Modulus

The physics of industrial single-point force indentation hardness measurements (Vickers, Knoop, Brinell, Rockwell, Shore, Leeb, and others) is compared with the depth-sensing nano, micro, and macro instrumental hardness technique that provides several further mechanical parameters, when using the correct force/depth curves exponent 3/2 on the depth of the loading curves. Only the latter reveal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016