Nilpotent symmetries for a free relativistic particle in superfield formalism

نویسنده

  • R P Malik
چکیده

The local, covariant, continuous and off-shell (as well as on-shell) nilpotent (anti-)BRST symmetry transformations are derived for a one (0+1)-dimensional free scalar relativistic particle in the framework of superfield formalism. The trajectory (i.e. the worldline) of the free particle, parametrized by a monotonically varying evolution parameter τ , is embedded in aD-dimensional flat Minkowski target manifold. This one-dimensional system is considered on a three (1+2)-dimensional supermanifold parametrized by an even element τ and a couple of odd elements (θ and θ̄) of a Grassmannian algebra. The horizontality condition and the invariance of the conserved (super)charges on the (super)manifolds play very crucial roles in the above derivations of the nilpotent symmetries. The geometrical interpretations for the nilpotent (anti-)BRST charges (and the nilpotent transformations they generate) are provided in the framework of superfield approach. PACS: 11.15.-q; 12.20.-m; 11.30.Ph; 02.20.+b

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nilpotent Symmetries for a Free Relativistic Particle in Augmented Superfield Formalism

The local, covariant, continuous and off-shell (as well as on-shell) nilpotent (anti-)BRST symmetry transformations are derived for a one (0+1)-dimensional free scalar relativistic particle in the framework of newly proposed augmented superfield formalism. The trajectory (i.e. the world-line) of the free particle, parametrized by a monotonically varying evolution parameter τ , is embedded in a ...

متن کامل

Nilpotent symmetries for a spinning relativistic particle in augmented superfield formalism

The local, covariant, continuous, anticommuting and nilpotent Becchi-RouetStora-Tyutin (BRST) and anti-BRST symmetry transformations for all the fields of a (0 + 1)-dimensional spinning relativistic particle are obtained in the framework of augmented superfield approach to BRST formalism. The trajectory of this super-particle, parametrized by a monotonically increasing evolution parameter τ , i...

متن کامل

ar X iv : h ep - t h / 05 06 10 9 v 1 1 4 Ju n 20 05 Nilpotent Symmetries For A Spinning Relativistic Particle In Augmented Superfield Formalism

The local, covariant, continuous, anticommuting and nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for all the fields of a (0 + 1)-dimensional spinning relativistic particle are obtained in the framework of augmented superfield approach to BRST formalism. The trajectory of this super-particle is parametrized by a monotonically increasing parameter τ that is em...

متن کامل

Superfield approach to nilpotent (anti-)BRST symmetries for the free Abelian 2-form gauge theory

We derive the off-shell nilpotent Becchi-Rouet-Stora-Tyutin (BRST) and antiBRST symmetry transformations for all the fields of a free Abelian 2-form gauge theory by exploiting the geometrical superfield approach to BRST formalism. The above four (3 + 1)dimensional (4D) theory is considered on a (4, 2)-dimensional supermanifold parameterized by the four even spacetime variables x (with μ = 0, 1,...

متن کامل

Augmented superfield approach to unique nilpotent symmetries for complex scalar fields in QED

The derivation of the exact and unique nilpotent Becchi-Rouet-Stora-Tyutin (BRST)and anti-BRST symmetries for the matter fields, present in any arbitrary interacting gauge theory, has been a long-standing problem in the framework of superfield approach to BRST formalism. These nilpotent symmetry transformations are deduced for the four (3 + 1)-dimensional (4D) complex scalar fields, coupled to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004