3D Ear Normalization and Recognition Based on Local Surface Variation

نویسندگان

  • Yi Zhang
  • Zhichun Mu
  • Li Yuan
  • Hui Zeng
  • Long Chen
  • Lorenzo J. Tardón
چکیده

Most existing ICP (Iterative Closet Point)-based 3D ear recognition approaches resort to the coarse-to-fine ICP algorithms to match 3D ear models. With such an approach, the gallery-probe pairs are coarsely aligned based on a few local feature points and then finely matched using the original ear point cloud. However, such an approach ignores the fact that not all the points in the coarsely segmented ear data make positive contributions to recognition. As such, the coarsely segmented ear data which contains a lot of redundant and noisy data could lead to a mismatch in the recognition scenario. Additionally, the fine ICP matching can easily trap in local minima without the constraint of local features. In this paper, an efficient and fully automatic 3D ear recognition system is proposed to address these issues. The system describes the 3D ear surface with a local feature—the Local Surface Variation (LSV), which is responsive to the concave and convex areas of the surface. Instead of being used to extract discrete key points, the LSV descriptor is utilized to eliminate redundancy flat non-ear data and get normalized and refined ear data. At the stage of recognition, only one-step modified iterative closest points using local surface variation (ICP-LSV) algorithm is proposed, which provides additional local feature information to the procedure of ear recognition to enhance both the matching accuracy and computational efficiency. On an Inter®Xeon®W3550, 3.07 GHz work station (DELL T3500, Beijing, China), the authors were able to extract features from a probe ear in 2.32 s match the ear with a gallery ear in 0.10 s using the method outlined in this paper. The proposed algorithm achieves rank-one recognition rate of 100% on the Chinese Academy of Sciences’ Institute of Automation 3D Face database (CASIA-3D FaceV1, CASIA, Beijing, China, 2004) and 98.55% with 2.3% equal error rate (EER) on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2, University of Notre Dame, South Bend, IN, USA, between 2003 and 2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Models Recognition in Fourier Domain Using Compression of the Spherical Mesh up to the Models Surface

Representing 3D models in diverse fields have automatically paved the way of storing, indexing, classifying, and retrieving 3D objects. Classification and retrieval of 3D models demand that the 3D models represent in a way to capture the local and global shape specifications of the object. This requires establishing a 3D descriptor or signature that summarizes the pivotal shape properties of th...

متن کامل

A Fast and Fully Automatic Ear Recognition Approach Based on 3D Local Surface Features

Sensitivity of global features to pose, illumination and scale variations encouraged researchers to use local features for object representation and recognition. Availability of 3D scanners also made the use of 3D data (which is less affected by such variations compared to its 2D counterpart) very popular in computer vision applications. In this paper, an approach is proposed for human ear reco...

متن کامل

A 3D ear recognition method based on auricle structural feature

The performances of most existing 3D ear recognition methods are degraded sharply by pose variation. In this paper, a 3D ear representation called 3D auricle structural feature(3DASF) and the corresponding pose robust 3D ear recognition method is presented. By measuring the surface characteristics through Surface Variation, 3DASF that contains ear key physiological structure is extracted. Then ...

متن کامل

Pose Normalization for Local Appearance-Based Face Recognition

We focused this work on handling variation in facial appearance caused by 3D head pose. A pose normalization approach based on fitting active appearance models (AAM) on a given face image was investigated. Profile faces with different rotation angles in depth were warped into shape-free frontal view faces. Face recognition experiments were carried out on the pose normalized facial images with a...

متن کامل

A novel Local feature descriptor using the Mercator projection for 3D object recognition

Point cloud processing is a rapidly growing research area of computer vision. Introducing of cheap range sensors has made a great interest in the point cloud processing and 3D object recognition. 3D object recognition methods can be divided into two categories: global and local feature-based methods. Global features describe the entire model shape whereas local features encode the neighborhood ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017