Evolution and Functional Diversification of Fructose Bisphosphate Aldolase Genes in Photosynthetic Marine Diatoms

نویسندگان

  • Andrew E. Allen
  • Ahmed Moustafa
  • Anton Montsant
  • Angelika Eckert
  • Peter G. Kroth
  • Chris Bowler
چکیده

Diatoms and other chlorophyll-c containing, or chromalveolate, algae are among the most productive and diverse phytoplankton in the ocean. Evolutionarily, chlorophyll-c algae are linked through common, although not necessarily monophyletic, acquisition of plastid endosymbionts of red as well as most likely green algal origin. There is also strong evidence for a relatively high level of lineage-specific bacterial gene acquisition within chromalveolates. Therefore, analyses of gene content and derivation in chromalveolate taxa have indicated particularly diverse origins of their overall gene repertoire. As a single group of functionally related enzymes spanning two distinct gene families, fructose 1,6-bisphosphate aldolases (FBAs) illustrate the influence on core biochemical pathways of specific evolutionary associations among diatoms and other chromalveolates with various plastid-bearing and bacterial endosymbionts. Protein localization and activity, gene expression, and phylogenetic analyses indicate that the pennate diatom Phaeodactylum tricornutum contains five FBA genes with very little overall functional overlap. Three P. tricornutum FBAs, one class I and two class II, are plastid localized, and each appears to have a distinct evolutionary origin as well as function. Class I plastid FBA appears to have been acquired by chromalveolates from a red algal endosymbiont, whereas one copy of class II plastid FBA is likely to have originated from an ancient green algal endosymbiont. The other copy appears to be the result of a chromalveolate-specific gene duplication. Plastid FBA I and chromalveolate-specific class II plastid FBA are localized in the pyrenoid region of the chloroplast where they are associated with β-carbonic anhydrase, which is known to play a significant role in regulation of the diatom carbon concentrating mechanism. The two pyrenoid-associated FBAs are distinguished by contrasting gene expression profiles under nutrient limiting compared with optimal CO2 fixation conditions, suggestive of a distinct specialized function for each. Cytosolically localized FBAs in P. tricornutum likely play a role in glycolysis and cytoskeleton function and seem to have originated from the stramenopile host cell and from diatom-specific bacterial gene transfer, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants.

The Calvin cycle is the initial pathway of photosynthetic carbon fixation, and several of its reaction steps are suggested to exert rate-limiting influence on the growth of higher plants. Plastid fructose 1,6-bisphosphate aldolase (aldolase, EC 4.1.2.13) is one of the nonregulated enzymes comprising the Calvin cycle and is predicted to have the potential to control photosynthetic carbon flux th...

متن کامل

Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses.

Sedoheptulose-1,7-bisphosphatase (SBPase) and fructose-1,6-bisphosphatase (FBPase) are essential nuclear-encoded enzymes involved in land plant Calvin cycle and gluconeogenesis. In this study, we cloned seven SBP and seven FBP cDNAs/genes and established sequences from all lineages of photosynthetic eukaryotes, in order to investigate their origin and evolution. Our data are best explained by a...

متن کامل

Radiation hybrid mapping of the pig ALDOA, ALDOB and ALDOC genes to SSC3, SSC1 and SSC12.

Source/description: Fructose-1, 6-bisphosphate aldolase is a glycolytic enzyme which plays a critical role in the reversible conversion of fructose-1, 6-bisphosphate to glyceraldehydes 3-phosphate and dihydroxyacetone phosphate. It is reported that in vertebrates fructose-1, 6-bisphosphate aldolase has three isozymes: aldolase A, fructose-bisphosphate (ALDOA); aldolase B, fructose-bisphosphate ...

متن کامل

Modifying the stereochemistry of an enzyme-catalyzed reaction by directed evolution.

Aldolases have potential as tools for the synthesis of stereochemically complex carbohydrates. Here, we show that directed evolution can be used to alter the stereochemical course of the reaction catalyzed by tagatose-1,6-bisphosphate aldolase. After three rounds of DNA shuffling and screening, the evolved aldolase showed an 80-fold improvement in k(cat)/K(m) toward the non-natural substrate fr...

متن کامل

Healthy and Gestational Diabetic Human Placental Fructose 1,6 Bisphosphate Aldolase; Comparative Investigation of Kinetic Properties and Inhibition Effects of DHAP, ATP, and Mg ion

Fructose-1,6-bisphosphate aldolase plays an effective role in glucose metabolism and gluconeogenic pathway, and reversibly catalyzes the split of fructose 1,6-bisphosphate into the triose phosphates D-glyceraldehyde phosphate and dihydroxyacetone phosphate. Aldolase has 160 kDa molecular weight and three tissue specific isozymes. Gestational diabetes mellitus is defined as glucose intolerance t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2012