Equivalence estimates for a class of singular perturbation problems
نویسندگان
چکیده
We give some equivalence estimates on the solution of a singular perturbation problem that represents, among other models, the Koiter and Naghdi shell models. Two of the estimates apply to intermediate shell problems and the third is for membrane/shear dominated shells. From these equivalences, many known and some new sharp estimates on the solutions of the singular perturbation problems easily follow. To cite this article: S. Zhang, C. R. Acad. Sci. Paris, Ser. I 342 (2006). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved. Résumé Estimations d’équivalence pour une classe de problèmes de perturbations singulières. Nous donnons des estimations d’équivalence de la solution d’un problème de perturbations singulières pour des modèles de coques qui englobent les modèles de Koiter et de Naghdi. Deux de ces estimations sont valables pour les problèmes de coques dits intermédiaires, la troisième s’applique à des coques de type membrane/cisaillement. Quelques unes de ces équivalences sont connues, mais d’autres équivalences donnent des résultats précis pour des solutions de problèmes de perturbations singulières. Pour citer cet article : S. Zhang, C. R. Acad. Sci. Paris, Ser. I 342 (2006). 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
منابع مشابه
Detecting the location of the boundary layers in singular perturbation problems with general linear non-local boundary conditions
Singular perturbation problems have been studied by many mathematicians. Since the approximate solutions of these problems are as the sum of internal solution (boundary layer area) and external ones, the formation or non-formation of boundary layers should be specified. This paper, investigates this issue for a singular perturbation problem including a first order differential equation with gen...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملA novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملRelative Convergence Estimates for the Spectral Asymptotic in the Large Coupling Limit
We prove optimal convergence estimates for eigenvalues and eigenvectors of a class of singular/stiff perturbed problems. Our profs are constructive in nature and use (elementary) techniques which are of current interest in computational Linear Algebra to obtain estimates even for eigenvalues which are in gaps of the essential spectrum. Further, we also identify a class of “regular” stiff pertur...
متن کاملApplying Legendre Wavelet Method with Regularization for a Class of Singular Boundary Value Problems
In this paper Legendre wavelet bases have been used for finding approximate solutions to singular boundary value problems arising in physiology. When the number of basis functions are increased the algebraic system of equations would be ill-conditioned (because of the singularity), to overcome this for large $M$, we use some kind of Tikhonov regularization. Examples from applied sciences are pr...
متن کامل