Raman and SEM analysis of a biocolonised hot spring travertine terrace in Svalbard, Norway

نویسندگان

  • Susana E Jorge-Villar
  • Liane G Benning
  • Howell GM Edwards
چکیده

BACKGROUND A profile across 8 layers from a fossil travertine terrace from a low temperature geothermal spring located in Svalbard, Norway has been studied using both Raman spectroscopy and SEM (Scanning Electron Microscopy) techniques to identify minerals and organic life signals. RESULTS Calcite, anatase, quartz, haematite, magnetite and graphite as well as scytonemin, three different carotenoids, chlorophyll and a chlorophyll-like compound were identified as geo- and biosignatures respectively, using 785 and/or 514 nm Raman laser excitation wavelengths. No morphological biosignatures representing remnant microbial signals were detected by high-resolution imaging, although spectral analyses indicated the presence of organics. In contrast, in all layers, Raman spectra identified a series of different organic pigments indicating little to no degradation or change of the organic signatures and thus indicating the preservation of fossil biomarker compounds throughout the life time of the springs despite the lack of remnant morphological indicators. CONCLUSION With a view towards planetary exploration we discuss the implications of the differences in Raman band intensities observed when spectra were collected with the different laser excitations. We show that these differences, as well as the different detection capability of the 785 and 514 nm laser, could lead to ambiguous compound identification. We show that the identification of bio and geosignatures, as well as fossil organic pigments, using Raman spectroscopy is possible. These results are relevant since both lasers have been considered for miniaturized Raman spectrometers for planetary exploration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.).

Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies ...

متن کامل

Steady states and linear stability analysis of precipitation pattern formation at geothermal hot springs.

A dynamical theory of geophysical precipitation pattern formation is presented and applied to irreversible calcium carbonate (travertine) deposition. Specific systems studied here are the terraces and domes observed at geothermal hot springs, such as those at Yellowstone National Park, and speleothems, particularly stalactites and stalagmites. The theory couples the precipitation front dynamics...

متن کامل

Origin and hydrogeochemical evolution of Azarshahr travertine springs, NW Iran

1-Introduction Travertines are limestones that form where hot groundwaters rich in calcium and bicarbonate emerge at springs. Travertines cover a large area southwest of Azarshahr (East Azarbaijan province), in some parts of which active springs are currently settling travertine. One of the main questions about travertine springs is their origin, as well as the secondary processes that have ch...

متن کامل

Lipid biomarkers and carbon-isotopes of modern travertine deposits (Yellowstone National Park, USA): Implications for biogeochemical dynamics in hot-spring systems

Lipid biomarkers and C fractionation patterns were used to understand the dynamics of carbon cycling during microbial metabolisms in different environments of travertine precipitation (called facies) at Spring AT-1 on Angel Terrace in the Mammoth Hot Springs complex of Yellowstone National Park, USA. Microbial mats that encrust travertine deposits were collected for analyses of lipid biomarkers...

متن کامل

Determination of Travertine Outcrop Types in Tazerj (Northern Hormozgan) using Mineralogical and Geochemical Data

The Tazerj travertine deposits are located 25 km northwest of Haji Abad and 5 km northeast of Tazerj Village in Hormozgan Province, southern Iran. This area is part of the Folded Zagros Zone. The studied travertine deposits are located on Eocene deposits and were most likely formed through the dissolution and re-deposition of groundwater and atmospheric waters onto the Asmari limestone. The pet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Geochemical Transactions

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2007