Factors associated with purity, biological function, and activation potential of endothelial colony-forming cells.

نویسندگان

  • Chao-Hung Wang
  • I-Chang Hsieh
  • Jong-Hwei Su Pang
  • Wen-Jin Cherng
  • Shing-Jong Lin
  • Tao-Hsin Tung
  • Hsiu-Fu Mei
چکیده

Endothelial colony-forming cells (ECFCs) are undergoing extensive investigations to tackle certain deliberating cardiovascular diseases. However, the success of this approach depends on a thorough understanding of ECFC biology. This study sought to determine the factors associated with the purity, biological function, and activation potential of ex vivo expanded ECFCs. Seventy-three patients with newly diagnosed coronary artery disease (CAD) and 24 controls were studied. ECFCs were cultured for up to 10 passages to investigate changes in and the impact of coronary risk factors on ECFC biological functions and the atherogenic potential. Passages 3-5 of ECFCs exhibited higher endothelial phenotype expression and better biological functions, in terms of nitric oxide secretion and tubular formation, but lower activation potentials compared with later passages (P <0.05). Studies on passage 3 showed that endothelial phenotype expression and biological functions were impaired, and the activation potentials of the ECFCs were significantly upregulated in subjects with coronary risk factors and especially those with CAD (P < 0.05). Furthermore, ECFCs were already activated before inflammatory stimulation in subjects with diabetes mellitus, hypertension, and CAD. Atorvastatin upregulated the endothelial nitric oxide synthase expression of ECFCs in CAD patients (P < 0.01), although not up to the baseline level of controls. In conclusion, the passage number and a variety of coronary risk factors were associated with the purity, biological function, and activation potential of ex vivo-expanded ECFCs. Functional assessments and manipulations of ECFCs have to be pursued in patients with extensive risk factors.

منابع مشابه

Colony Forming Unit Endothelial Cells Do not Exhibit Telomerase Alternative Splicing Variants and Activity

Introduction: Endothelial progenitor colony forming unit-endothelial cells (CFU-EC) were first believed to be the progenitors of endothelial cells, named endothelial progenitor cells. Further studies revealed that they are monocytes regulating vasculogenesis. The main hindrance of these cells for therapeutic purposes is their low frequency and limited replicative potentials. This study was unde...

متن کامل

Mycophenolic acid induces senescence of vascular precursor cells

OBJECTIVE Endothelial dysfunction is central to the pathogenesis of many rheumatic diseases, typified by vascular inflammation and damage. Immunosuppressive drugs induce disease remission and lead to improved patient survival. However, there remains a higher incidence of cardiovascular disease in these patients even after adequate disease control. The purpose of this study was to determine the ...

متن کامل

قابلیت تمایز سلول‌های بنیادی جنین انسان (Royan H5) به سلول‌های همانژیوبلاست در شرایط آزمایشگاهی

Background: Human embryonic stem cells (hESCs) are capable of self-renewal and large-scale expansion. They also have the capacity to differentiate into a variety of cell types including liver, cardiac and neuron cells. However, it is not yet clear whether hESCs can differentiate to hemangioblasts under in-vitro conditions. Hemangioblasts are bipotential progenitors that can generate hematopoiet...

متن کامل

Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells

BACKGROUND Endothelial dysfunction, characterized by diminished endothelial progenitor cell (EPC) function and flow-mediated vasodilation (FMD), is a clinically significant feature of heart failure (HF). Mesenchymal stem cells (MSCs), which have pro-angiogenic properties, have the potential to restore endothelial function. Accordingly, we tested the hypothesis that MSCs increase EPC function an...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 300 3  شماره 

صفحات  -

تاریخ انتشار 2011