Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation.

نویسندگان

  • Stéphane Mouret
  • Caroline Baudouin
  • Marie Charveron
  • Alain Favier
  • Jean Cadet
  • Thierry Douki
چکیده

Solar UV radiation is the most important environmental factor involved in the pathogenesis of skin cancers. The well known genotoxic properties of UVB radiation (290-320 nm) mostly involve bipyrimidine DNA photoproducts. In contrast, the contribution of more-abundant UVA radiation (320-400 nm) that are not directly absorbed by DNA remains poorly understood in skin. Using a highly accurate and quantitative assay based on HPLC coupled with tandem mass spectrometry, we determined the type and the yield of formation of DNA damage in whole human skin exposed to UVB or UVA. Cyclobutane pyrimidine dimers, a typical UVB-induced DNA damage, were found to be produced in significant yield also in whole human skin exposed to UVA through a mechanism different from that triggered by UVB. Moreover, the latter class of photoproducts is produced in a larger amount than 8-oxo-7,8-dihydro-2'-deoxyguanosine, the most common oxidatively generated lesion, in human skin. Strikingly, the rate of removal of UVA-generated cyclobutane pyrimidine dimers was lower than those produced by UVB irradiation of skin. Finally, we compared the formation yields of DNA damage in whole skin with those determined in primary cultures of keratinocytes isolated from the same donors. We thus showed that human skin efficiently protects against UVB-induced DNA lesions, whereas very weak protection is afforded against UVA. These observations emphasize the likely role played by the UVA-induced DNA damage in skin carcinogenesis and should have consequences for photoprotection strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

UVA generates pyrimidine dimers in DNA directly.

There is increasing evidence that UVA radiation, which makes up approximately 95% of the solar UV light reaching the Earth's surface and is also commonly used for cosmetic purposes, is genotoxic. However, in contrast to UVC and UVB, the mechanisms by which UVA produces various DNA lesions are still unclear. In addition, the relative amounts of various types of UVA lesions and their mutagenic si...

متن کامل

The relative roles of DNA damage induced by UVA irradiation in human cells.

UVA light (320-400 nm) represents approximately 95% of the total solar UV radiation that reaches the Earth's surface. UVA light induces oxidative stress and the formation of DNA photoproducts in skin cells. These photoproducts such as pyrimidine dimers (cyclobutane pyrimidine dimers, CPDs, and pyrimidine (6-4) pyrimidone photoproducts, 6-4PPs) are removed by nucleotide excision repair (NER). In...

متن کامل

Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation.

The premutagenic oxidative DNA base damage, 7,8-dihydro-8-oxoguanine, is induced in human skin fibroblasts by monochromatic radiation ranging from a UVB wavelength (312 nm) up to wavelengths in the near visible (434 nm). The oxidative damage is not generated by absorption of radiation in DNA but rather by activation of photosensitizers generating genotoxic singlet oxygen species. The spectrum f...

متن کامل

The mechanisms of UV mutagenesis.

Ultraviolet (UV) light induces specific mutations in the cellular and skin genome such as UV-signature and triplet mutations, the mechanism of which has been thought to involve translesion DNA synthesis (TLS) over UV-induced DNA base damage. Two models have been proposed: "error-free" bypass of deaminated cytosine-containing cyclobutane pyrimidine dimers (CPDs) by DNA polymerase η, and error-pr...

متن کامل

Solar radiation and induction of DNA damages, mutations and skin cancers

An understanding of the effects of sunlight on human skin begins with the effects on DNA and extends to cells, animals and humans. The major DNA photoproducts arising from UVB (280-320 nm) exposures are cyclobutane pyrimidine dimers. If unrepaired, they may kill or mutate cells and result in basal and squamous cell carcinomas. Although UVA (320-400 nm) and visible wavelengths are poorly absorbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 37  شماره 

صفحات  -

تاریخ انتشار 2006