Controlled self-assembly of helical nano-ribbons formed by achiral amphiphiles.
نویسندگان
چکیده
Helical nano-ribbons with a large aspect ratio were obtained through the self-assembly of an achiral amphiphile. The symmetry breaking is attributed to the orderly but twisted stacking of terpyridine groups. In addition, the morphology of the assemblies can be tuned by the coordination between terpyridine and Zn(2+) ion.
منابع مشابه
Solvent-controlled reversible switching between adsorbed self-assembled nanoribbons and nanotubes.
We have demonstrated that solutions of 3,5-bis-(5-hexylcarbamoylpentyloxy)-benzoic acid decyl ester (BHPB-10) can form metastable nanostructures on solid substrates and in the bulk. BHPB-10 is an achiral molecule involving several distinct, strongly interacting groups (SIGs), one aromatic-ester ring and two amide groups per molecule. Specific solvents affect the interactions between particular ...
متن کاملShedding light on helical microtubules: real-time observations of microtubule self-assembly by light microscopy.
Helical tubules are a fascinating and an intriguing class of self-assemblies. They occur frequently in biology and are believed to be intermediates in formation of gallstones. The pathway by which amphiphiles transform from an initial state of vesicles or micelles into such tubules has puzzled soft matter physicists, and it has raised important questions about the interplay between molecular c...
متن کاملRight handed chiral superstructures from achiral molecules: self-assembly with a twist
The induction and development of chiral supramolecular structures from hierarchical self-assembly of achiral compounds is closely related to the evolution of life and the chiral amplification found in nature. Here we show that the combination of achiral tetraphenylethene (TPE) an AIE-active luminophore bearing four long alkyl chains via amide linkage allows the entire process of induction and c...
متن کاملSelf-assembly of model DNA-binding peptide amphiphiles.
Peptide amphiphiles combine the specific functionality of proteins with the engineering convenience of synthetic amphiphiles. These molecules covalently link a peptide headgroup, typically from an active fragment of a larger protein, to a hydrophobic alkyl tail. Our research is aimed at forming and characterizing covalently stabilized, self-assembled, peptide-amphiphile aggregates that can be u...
متن کاملDNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles.
DNA nanotubes were created using molecular self-assembly of single-stranded DNA (ssDNA)-amphiphiles composed of a hydrophobic dialkyl tail and polycarbon spacer and a hydrophilic ssDNA headgroup. The nanotube structures were formed by bilayers of amphiphiles, with the hydrophobic components forming an inner layer that was shielded from the aqueous solvent by an outer layer of ssDNA. The nanotub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2015