Effect of Charge on Separation of Liposomes upon Stagnation

نویسندگان

  • Mahsa Narenji
  • Mohammad Reza Talaee
  • Hamid Reza Moghimi
چکیده

Liposomes are used widely as drug delivery systems in different forms including nanosuspensions, osmotic pumps, infusion pumps, and IV injections. Some of these systems (e.g. infusion or osmotic pumps) might stay stagnant for a long time during or before administration, and therefore, might face phase separation. In spite of these, there are no data available about the behavior of liposomal systems upon stagnation in such drug delivery systems. As a part of a series of investigations on convective flow and stagnation of liposomes, the current work represents the effects of charge on liposomes separation upon stagnation. Positive, negative, and neutral liposomes, with zeta potentials of +56, -50 and 1.4 mV respectively, were prepared and encountered gravity (separating force) in a designed sedimentation model. Samples were collected over 25 h and their D0.5 (diameter which half of the particles are smaller than), particle size distribution, and phospholipid contents were evaluated. The ratio of the D0.5 in the last to the first sample, (Separation Factor) for positive, negative, and neutral liposomes were calculated to be 1.00 (no separation), 0.98 (no separation), and 0.33 (separation) respectively. The same trend was observed for lipid contents and particles population. These data show that liposomes' charge affect their separation under gravity and is a very important factor in their uniformity upon storage, pre-administrational steps, and even during administration in systems such as infusion pumps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of charge on separation of liposomes upon stagnation

Abstract Liposomes are used widely as drug delivery systems in different forms including nanosuspensions, osmotic pumps, infusion pumps and IV injections. Some of these systems (e.g. infusion or osmotic pumps) might stay stagnant for a long time during or before administration, and therefore, might face phase separation. In spite of these, there is no data available about the behavior of lipos...

متن کامل

Effect of charge on separation of liposomes upon stagnation

Abstract Liposomes are used widely as drug delivery systems in different forms including nanosuspensions, osmotic pumps, infusion pumps and IV injections. Some of these systems (e.g. infusion or osmotic pumps) might stay stagnant for a long time during or before administration, and therefore, might face phase separation. In spite of these, there is no data available about the behavior of lipos...

متن کامل

Effect of bilayer flexibility and medium viscosity on separation of liposomes upon stagnation

Liposomes are widely used as drug delivery systems in different forms including osmotic pumps, infusion and IV injection. In spite of these, there is no data available about their behavior under convective flow (e.g. infusion or osmotic pumps) and upon stagnation in such drug delivery systems. As a part of a series of investigations in this area, the present study investigates the effects of vi...

متن کامل

Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths.

The size-dependent electrophoretic migration and separation of liposomes was demonstrated and studied in capillary zone electrophoresis (CZE). The liposomes were extruded and nonextruded preparations consisting of phosphatidylcholine/phosphatidylglycerol/cholesterol in various ratios and ranging from 125 to 488 nm in mean diameter. When liposomes of identical surface charge density were subject...

متن کامل

In vivo evaluation of mucoadhesive properties of nanoliposomal formulations upon coating with trimethylchitosan polymer

Objective(s): Drug delivery via mucosal routes has been confirmed to be effective in inducing strong immune responses. Liposomes could enhance immune responses and mucoadhesive potentials, make them useful mucosal drug delivery systems. Coating of liposomes by mucoadhesive polymers succeeded in enhancing immune responses. Our studies aim at preparation and characterization of trimethylchitosan-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017