Stochastic Homogenization of Hamilton-jacobi Equations in Stationary Ergodic Spatio-temporal Media
نویسنده
چکیده
This paper considers the problem of homogenization of a class of convex HamiltonJacobi equations in spatio-temporal stationary ergodic environments. Special attention is placed on the interplay between the use of the Subadditive Ergodic Theorem and continuity estimates for the solutions that are independent of the oscillations in the equation. Moreover, an inf-sup formula for the effective Hamiltonian is provided.
منابع مشابه
Stochastic homogenization of viscous superquadratic Hamilton–Jacobi equations in dynamic random environment
We study the qualitative homogenization of second-order Hamilton–Jacobi equations in space-time stationary ergodic random environments. Assuming that the Hamiltonian is convex and superquadratic in the momentum variable (gradient), we establish a homogenization result and characterize the effective Hamiltonian for arbitrary (possibly degenerate) elliptic diffusion matrices. The result extends p...
متن کاملPeriodic approximations of the ergodic constants in the stochastic homogenization of nonlinear second-order (degenerate) equations
We prove that the effective nonlinearities (ergodic constants) obtained in the stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde are approximated by the analogous quantities of appropriate “periodizations” of the equations. We also obtain an error estimate, when there is a rate of convergence for the stochastic homogenization.
متن کاملBreakdown of Homogenization for the Random Hamilton-jacobi Equations
We study the homogenization of Lagrangian functionals of Hamilton-Jacobi equations (HJ) with quadratic nonlinearity and unbounded stationary ergodic random potential in R, d≥1. We show that homogenization holds if and only if the potential is bounded from above. When the potential is unbounded from above, homogenization breaks down, due to the almost sure growth of the running maxima of the ran...
متن کاملA PRELUDE TO THE THEORY OF RANDOM WALKS IN RANDOM ENVIRONMENTS
A random walk on a lattice is one of the most fundamental models in probability theory. When the random walk is inhomogenous and its inhomogeniety comes from an ergodic stationary process, the walk is called a random walk in a random environment (RWRE). The basic questions such as the law of large numbers (LLN), the central limit theorem (CLT), and the large deviation principle (LDP) are ...
متن کاملErgodic Control of Semilinear Stochastic Equations and Hamilton-jacobi Equations
In this paper we consider optimal control of stochastic semilinear equations with linearly increasing drift and cylindrical noise. We show existence and uniqueness (up to an additive constant) of solutions to the stationary Hamilton-Jacobi equation associated with the cost functional given by the asymptotic average per unit time cost. As a consequence we nd the optimizing controls given in the ...
متن کامل