Shape and Boundary Similarity Features for Accurate HCC Image Recognition

نویسندگان

  • Xiaoyu Duan
  • Huiyan Jiang
  • Siqi Li
چکیده

Nucleus morphology is of great importance in conventional cancer pathological diagnosis, which could provide information difference between normal and abnormal nuclei visually. Therefore, this paper proposes two novel kinds of features for normal and hepatocellular carcinoma (HCC) nucleus recognition, including shape and boundary similarity. First, each individual nucleus patch with the fixed size is obtained using center-proliferation segmentation (CPS) method. Then, nucleus shape library is constructed based on manual selection by pathologists, which is utilized to measure nucleus shape similarity via Dice, Jaccard, precision, and recall coefficients. Meanwhile, boundary similarity is evaluated through triangles composed of some boundary feature points for each nucleus. Finally, the conventional random forest (RF) is used to train and test the classification model for HCC nucleus recognition. Extensive cross-validation tests could facilitate the selection of the optimal feature set and the experiment comparison results demonstrate that our proposed morphological features are more beneficial for classification compared with other traditional characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the use of Textural Features and Neural Networks for Leaf Recognition

for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...

متن کامل

ARTISAN: A Shape Retrieval System Based on Boundary Family Indexing

Successful retrieval of images by shape feature is likely to be achieved only if we can mirror human similarity judgements. Following Biederman’s theory of recognition-by-components, we postulate that shape analysis for retrieval should characterize an image by identifying properties such as collinearity, shape similarity and proximity in component boundaries. Such properties can then be used t...

متن کامل

Face Recognition Using Contour-Based Multiscale Distance Matrix

Face Recognition is an emerging approach in the recent years. In this paper, the formulation of a face recognition approach using contour-based shape descriptor named Multiscale Distance Matrix (MDM) is developed using the concept of inner-distance in the distance matrix instead of the Euclidean distance. In the proposed scheme, first the similarity in the shape of the face is found by taking a...

متن کامل

Detection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods

Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...

متن کامل

Evaluation of Similarity Measures for Template Matching

Image matching is a critical process in various photogrammetry, computer vision and remote sensing applications such as image registration, 3D model reconstruction, change detection, image fusion, pattern recognition, autonomous navigation, and digital elevation model (DEM) generation and orientation. The primary goal of the image matching process is to establish the correspondence between two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017