Opposite orientations of DNA bending by c-Myc and Max.

نویسندگان

  • D S Wechsler
  • C V Dang
چکیده

The control of gene transcription requires specific protein-protein and protein-DNA interactions. c-Myc, the protein product of the c-myc protooncogene, is a member of the basic helix-loop-helix leucine-zipper class of transcription factors. Although c-Myc is able to bind to a specific core hexanucleotide DNA sequence (CACGTG), its precise function in modulating transcription remains unclear. The recent discovery of Max, a basic helix-loop-helix leucine-zipper partner protein for c-Myc, suggests that the ability of c-Myc to regulate transcription is modulated by the presence of Max. By taking advantage of the altered mobility of protein-bound DNA in the mobility-shift assay, we demonstrate the homo- and heterodimeric complexes of c-Myc and Max are able to cause increased DNA flexure as measured by the circular permutation assay. Based on phasing analysis, c-Myc and Max homodimers bend DNA in opposite orientations, whereas c-Myc-Max heterodimers cause a smaller bend, in an orientation similar to that induced by Max homodimers. To address the possibility that the apparent opposite orientation of bending was the result of DNA unwinding by one of the proteins, we measured the ability of c-Myc and Max homodimers to affect DNA unwinding; we were unable to show any specific unwinding caused by c-Myc or Max. In addition to demonstrating that members of the basic helix-loop-helix leucine-zipper class of transcription factors are able to induce DNA bending, these results suggest that different transcription factor dimers are able to bind to identical DNA sequences and yet have distinct structural effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The endonuclease isoschizomers, SmaI and XmaI, bend DNA in opposite orientations.

The SmaI and XmaI endonucleases are imperfect isoschizomers that recognize the sequence CCCGGG. SmaI cleaves between the internal CpG to produce blunt end scissions whereas XmaI cleaves between the external cytosines to produce a four base, five prime overhang. Each of the endonucleases forms stable, specific complexes with DNA in the absence of magnesium. Circular permutation analyses of the p...

متن کامل

c-Myc/Max heterodimers bind cooperatively to the E-box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene.

The oncoprotein c-Myc plays an important role in cell proliferation, transformation, inhibition of differentiation and apoptosis. These functions most likely result from the transcription factor activity of c-Myc. As a heterodimer with Max, the c-Myc protein binds to the E-box sequence (CACGTG), which is also recognized by USF dimers. In order to test differences in target gene recognition of c...

متن کامل

Mnt–Max to Myc–Max complex switching regulates cell cycle entry

The c-Myc oncoprotein is strongly induced during the G0 to S-phase transition and is an important regulator of cell cycle entry. In contrast to c-Myc, the putative Myc antagonist Mnt is maintained at a constant level during cell cycle entry. Mnt and Myc require interaction with Max for specific DNA binding at E-box sites, but have opposing transcriptional activities. Here, we show that c-Myc in...

متن کامل

Transcriptional control of DNA replication licensing by Myc

The c-myc protooncogene encodes the Myc transcription factor, a global regulator of fundamental cellular processes. Deregulation of c-myc leads to tumorigenesis, and c-myc is an important driver in human cancer. Myc and its dimerization partner Max are bHLH-Zip DNA binding proteins involved in transcriptional regulation of target genes. Non-transcriptional functions have also been attributed to...

متن کامل

Biophysical characterization of the b-HLH-LZ of ΔMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers

It is classically recognized that the physiological and oncogenic functions of Myc proteins depend on specific DNA binding enabled by the dimerization of its C-terminal basic-region-Helix-Loop-Helix-Leucine Zipper (b-HLH-LZ) domain with that of Max. However, a new paradigm is emerging, where the binding of the c-Myc/Max heterodimer to non-specific sequences in enhancers and promoters drives the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 89 16  شماره 

صفحات  -

تاریخ انتشار 1992