LLT-PolyU: Identifying Sentiment Intensity in Ironic Tweets
نویسندگان
چکیده
In this paper, we describe the system we built for Task 11 of SemEval2015, which aims at identifying the sentiment intensity of figurative language in tweets. We use various features, including those specially concerned with the identification of irony and sarcasm. The features are evaluated through a decision tree regression model and a support vector regression model. The experiment result of the fivecross validation on the training data shows that the tree regression model outperforms the support vector regression model. The former is therefore used for the final evaluation of the task. The results show that our model performs especially well in predicting the sentiment intensity of tweets involving irony and sarcasm.
منابع مشابه
Sentiment Analyzer with Rich Features for Ironic and Sarcastic Tweets
Sentiment Analysis of tweets is a complex task, because these short messages employ unconventional language to increase the expressiveness. This task becomes even more difficult when people use figurative language (e.g. irony, sarcasm and metaphors) because it causes a mismatch between the literal meaning and the actual expressed sentiment. In this paper, we describe a sentiment analysis system...
متن کاملKELabTeam: A Statistical Approach on Figurative Language Sentiment Analysis in Twitter
In this paper, we propose a new statistical method for sentiment analysis of figurative language within short texts collected from Twitter (called tweets) as a part of SemEval2015 Task 11. Particularly, the proposed model focuses on classifying the tweets into three categories (i.e., sarcastic, ironic, and metaphorical tweet) by extracting two main features (i.e., term features and emotion patt...
متن کاملValenTo: Sentiment Analysis of Figurative Language Tweets with Irony and Sarcasm
This paper describes the system used by the ValenTo team in the Task 11, Sentiment Analysis of Figurative Language in Twitter, at SemEval 2015. Our system used a regression model and additional external resources to assign polarity values. A distinctive feature of our approach is that we used not only wordsentiment lexicons providing polarity annotations, but also novel resources for dealing wi...
متن کاملA High-Performance Model based on Ensembles for Twitter Sentiment Classification
Background and Objectives: Twitter Sentiment Classification is one of the most popular fields in information retrieval and text mining. Millions of people of the world intensity use social networks like Twitter. It supports users to publish tweets to tell what they are thinking about topics. There are numerous web sites built on the Internet presenting Twitter. The user can enter a sentiment ta...
متن کامل2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework
Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...
متن کامل