Asymptotic Behavior of Stochastic Strongly Damped Wave Equation with Multiplicative Noise
نویسندگان
چکیده
In this paper we study the asymptotic dynamics of the stochastic strongly damped wave equation with multiplicative noise under homogeneous Dirichlet boundary condition. We investigate the existence of a compact random attractor for the random dynamical system associated with the equation.
منابع مشابه
Numerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملAsymptotic Behavior of Stochastic Strongly Wave Equation on Unbounded Domains
We study the asymptotic behavior of solutions to the stochastic strongly damped wave equation with additive noise defined on unbounded domains. We first prove the uniform estimates of solutions, and then establish the existence of a random attractor.
متن کاملRandom Attractor for Non-autonomous Stochastic Strongly Damped Wave Equation on Unbounded Domains∗
In this paper we study the asymptotic dynamics for the nonautonomous stochastic strongly damped wave equation driven by additive noise defined on unbounded domains. First we introduce a continuous cocycle for the equation and then investigate the existence and uniqueness of tempered random attractors which pullback attract all tempered random sets.
متن کاملAttractors for Stochastic Strongly Damped Plate Equations with Additive Noise
We study the asymptotic behavior of stochastic plate equations with homogeneous Neumann boundary conditions. We show the existence of an attractor for the random dynamical system associated with the equation.
متن کاملContinuous dependence on coefficients for stochastic evolution equations with multiplicative Levy Noise and monotone nonlinearity
Semilinear stochastic evolution equations with multiplicative L'evy noise are considered. The drift term is assumed to be monotone nonlinear and with linear growth. Unlike other similar works, we do not impose coercivity conditions on coefficients. We establish the continuous dependence of the mild solution with respect to initial conditions and also on coefficients. As corollaries of ...
متن کامل