Multi-class particle swarm model selection for automatic image annotation
نویسندگان
چکیده
0957-4174/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2012.03.023 q This project was supported by CONACyT unde scholarship 205834. ⇑ Corresponding author. Tel.: +52 2222663100x831 E-mail address: [email protected] (H.J. Escalant This article describes the application of particle swarm model selection (PSMS) to the problem of automatic image annotation (AIA). PSMS can be considered a black-box tool for the selection of effective classifiers in binary classification problems. We face the AIA problem as one of multi-class classification, considering a one-vs-all (OVA) strategy. OVA makes a multi-class problem into a series of binary classification problems, each of which deals with whether a region belongs to a particular class or not. We use PSMS to select the models that compose the OVA classifier and propose a new technique for making multi-class decisions from the selected classifiers. This way, effective classifiers can be obtained in acceptable times; specific methods for preprocessing, feature selection and classification are selected for each class; and, most importantly, very good annotation performance can be obtained. We present experimental results in six data sets that give evidence of the validity of our approach; to the best of our knowledge the results reported herein are the best obtained so far in the data sets we consider. It is important to emphasize that despite the application domain we consider is AIA, nothing restricts us of applying the methods described in this article to any other multi-class classification problem. . 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Using Particle Swarm Optimization for Image Regions Annotation
In this paper, we propose an automatic image annotation approach for region labeling that takes advantage of both context and semantics present in segmented images. The proposed approach is based on multi-class K-nearest neighbor, k-means and particle swarm optimization (PSO) algorithms for feature weighting, in conjunction with normalized cuts-based image segmentation technique. This hybrid ap...
متن کاملTags Re-ranking Using Multi-level Features in Automatic Image Annotation
Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...
متن کاملNegative Selection Based Data Classification with Flexible Boundaries
One of the most important artificial immune algorithms is negative selection algorithm, which is an anomaly detection and pattern recognition technique; however, recent research has shown the successful application of this algorithm in data classification. Most of the negative selection methods consider deterministic boundaries to distinguish between self and non-self-spaces. In this paper, two...
متن کاملFuzzy Neighbor Voting for Automatic Image Annotation
With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...
متن کاملAutomatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models
Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Expert Syst. Appl.
دوره 39 شماره
صفحات -
تاریخ انتشار 2012