Calibration of CFD Model for Mist/Steam Impinging Jets Cooling
نویسندگان
چکیده
In the heavy-frame advanced turbine systems, steam is used as a coolant for turbine blade cooling. The concept of injecting mist into the impinging jets of steam was experimentally proved as an effective way of significantly enhancing the cooling effectiveness in the laboratory under low pressure and temperature conditions. However, whether mist/steam cooling is applicable under actual gas turbine operating conditions is still subject to further verification. Recognizing the difficulties of conducting experiments in an actual high-pressure, high-temperature working gas turbine, a simulation using a CFD model calibrated with laboratory data would be an opted approach. To this end, the present study conducts a CFD model calibration against the database of two experimental cases including a slot impinging jet and three rows of staggered impinging jets. Using the experimental results, the CFD model has been tuned by employing different turbulence models, computational cells, wall y values, and selection of nearwall functions. In addition, the effect of different forces (e.g. drag, thermophoretic, Brownian, and Saffman’s lift force) are also studied. None of the models are good predictors for all the flow regions from near the stagnation region to far-field downstream of the jets. Overall speaking, both the standard k-ε and RSM turbulence models perform better than other models. The RSM model has produced the closest results to the experimental data due to its capability of modeling the non-isotropic turbulence shear stresses in the 3-D impinging jet fields. For the 3-D flow fields, the nearest element from the wall must be set to approximately unity (y≈1) to capture the correct flow structure. The simulated results showed that the calibrated CFD model could predict the heat transfer coefficient of steam-only case within 2 to 5% deviations from the experimental results for all the cases. When mist is employed, the prediction of wall temperatures is within 5% for a slot jet and within 10% for three-row jets.
منابع مشابه
CFD Model Validation and Prediction of Mist/Steam Cooling in a 180-Degree Bend Tubes
To achieve higher efficiency target of the advanced turbine systems, the closed-loop steam cooling scheme is employed to cool the airfoil. It is proven from the experimental results at laboratory working conditions that injecting mist into steam can significantly augment the heat transfer in the turbine blades with several fundamental studies. The mist cooling technique has to be tested at gas ...
متن کاملValidation of Mist/Steam Cooling CFD model in a Horizontal Tube
Mist cooling concept has been considered for cooling turbine airfoils for many years. This concept has been proven experimentally as an effective method to significantly enhance the cooling effectiveness with several fundamental studies in the laboratory under low pressure and temperature conditions. However, it is not certain the same performance can be harnessed in the real gas turbine enviro...
متن کاملModeling of Heat Transfer in a Mist/Steam Impinging Jet
The addition of mist to a flow of steam or gas offers enhanced cooling for many applications, including cooling of gas turbine blades. The enhancement mechanisms include effects of mixing of mist with the gas phase and effects of evaporation of the droplets. An impinging mist flow is attractive for study because the impact velocity is relatively high and predictable. Water droplets, less than 1...
متن کاملNumerical investigation of thermal mixing of shear thinning fluids in one-way opposing jets
In recent years, impinging streams have received increasing interest for their high efficiency in heat and mass transfer. This numerical study was conducted to investigate flow and heat transfer characteristics of one-way opposing jets of non-Newtonian fluids. Effects of Reynolds number impinging angle, momentum ratio and flow behavior index on mixing index were evaluated. The results showed im...
متن کاملHeat Transfer under Double Turbulent Pulsating Jets Impinging on a Flat Surface
In this study, the numerical analysis of turbulent flow and heat transfer of double pulsating impinging jets on a flat surface has been investigated. The unsteady two-dimensional numerical solution for two similar and dissimilar jets was performed using the RNG k-ε model. The results showed that the RNG k-ε model has more satisfactory predictions of the Nusselt number distribution. Comparisons ...
متن کامل