Positivity-preserving Finite Difference Weno Schemes with Constrained Transport for Ideal Magnetohydrodynamic Equations

نویسندگان

  • ANDREW J. CHRISTLIEB
  • YUAN LIU
  • ZHENGFU XU
چکیده

In this paper, we utilize the maximum-principle-preserving flux limiting technique, originally designed for high order weighted essentially non-oscillatory (WENO) methods for scalar hyperbolic conservation laws, to develop a class of high order positivity-preserving finite difference WENO methods for the ideal magnetohydrodynamic (MHD) equations. Our schemes, under the constrained transport (CT) framework, can achieve high order accuracy, a discrete divergence-free condition and positivity of the numerical solution simultaneously without extra CFL constraints. Numerical examples in 1D, 2D and 3D are provided to demonstrate the performance of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Positivity-preserving high order finite difference WENO schemes for compressible Euler equations

In [19, 20, 22], we constructed uniformly high order accurate discontinuous Galerkin (DG) which preserve positivity of density and pressure for the Euler equations of compressible gas dynamics. The technique also applies to high order accurate finite volume schemes. In this paper, we show an extension of this framework to construct positivity-preserving high order essentially non-oscillatory (E...

متن کامل

High order positivity-preserving finite volume WENO schemes for a hierarchical size-structured population model

In this paper we develop high order positivity-preserving finite volume weighted essentially non-oscillatory (WENO) schemes for solving a hierarchical size-structured population model with nonlinear growth, mortality and reproduction rates. We carefully treat the technical complications in boundary conditions and global integration terms to ensure high order accuracy and positivity-preserving p...

متن کامل

Positivity-Preserving High Order Finite Volume HWENO Schemes for Compressible Euler Equations

In this paper, we present a positivity-preserving high order finite volume Hermite weighted essentially non-oscillatory (HWENO) scheme for compressible Euler equations based on the framework for constructing uniformly high order accurate positivity-preserving discontinuous Galerkin and finite volume schemes for Euler equations proposed in [20]. The major advantages of the HWENO schemes is their...

متن کامل

A Survey of High Order Schemes for the Shallow Water Equations

In this paper, we survey our recent work on designing high order positivitypreserving well-balanced finite difference and finite volume WENO (weighted essentially non-oscillatory) schemes, and discontinuous Galerkin finite element schemes for solving the shallow water equations with a non-flat bottom topography. These schemes are genuinely high order accurate in smooth regions for general solut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014