Q-LDA: Uncovering Latent Patterns in Text-based Sequential Decision Processes
نویسندگان
چکیده
In sequential decision making, it is often important and useful for end users to understand the underlying patterns or causes that lead to the corresponding decisions. However, typical deep reinforcement learning algorithms seldom provide such information due to their black-box nature. In this paper, we present a probabilistic model, Q-LDA, to uncover latent patterns in text-based sequential decision processes. The model can be understood as a variant of latent topic models that are tailored to maximize total rewards; we further draw an interesting connection between an approximate maximum-likelihood estimation of Q-LDA and the celebrated Q-learning algorithm. We demonstrate in the text-game domain that our proposed method not only provides a viable mechanism to uncover latent patterns in decision processes, but also obtains state-of-the-art rewards in these games.
منابع مشابه
An Online Inference Algorithm for Labeled Latent Dirichlet Allocation
Using topic models to analyze documents is a popular method in text mining. Labeled Latent Dirichlet Allocation(Labeled LDA) is one of them that is widely used to model tagged documents and to solve relevant problems, such as tagged document visualization, snippet extraction and so on. However, traditional batch inference for Labeled LDA, which runs over entire document collection, is computati...
متن کاملAutomatic keyword extraction using Latent Dirichlet Allocation topic modeling: Similarity with golden standard and users' evaluation
Purpose: This study investigates the automatic keyword extraction from the table of contents of Persian e-books in the field of science using LDA topic modeling, evaluating their similarity with golden standard, and users' viewpoints of the model keywords. Methodology: This is a mixed text-mining research in which LDA topic modeling is used to extract keywords from the table of contents of sci...
متن کاملTopicTiling: A Text Segmentation Algorithm based on LDA
This work presents a Text Segmentation algorithm called TopicTiling. This algorithm is based on the well-known TextTiling algorithm, and segments documents using the Latent Dirichlet Allocation (LDA) topic model. We show that using the mode topic ID assigned during the inference method of LDA, used to annotate unseen documents, improves performance by stabilizing the obtained topics. We show si...
متن کاملThe Security of Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) is an increasingly popular tool for data analysis in many domains. If LDA output affects decision making (especially when money is involved), there is an incentive for attackers to compromise it. We ask the question: how can an attacker minimally poison the corpus so that LDA produces topics that the attacker wants the LDA user to see? Answering this question i...
متن کاملBounding Sample Errors in Approximate Distributed Latent Dirichlet Allocation
Latent Dirichlet allocation (LDA) is a popular algorithm for discovering structure in large collections of text or other data. Although its complexity is linear in the data size, its use on increasingly massive collections has created considerable interest in parallel implementations. “Approximate distributed” LDA, or AD-LDA, approximates the popular collapsed Gibbs sampling algorithm for LDA m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017