Projection of Climate Change onto Modes of Atmospheric Variability
نویسندگان
چکیده
Two possible interpretations of forced climate change view it as projecting, either linearly or nonlinearly, onto the dominant modes of variability of the climate system. An evaluation of these two interpretations is performed using annual mean sea level pressure (SLP) and surface air temperature (SAT) fields obtained from integrations of the Geophysical Fluid Dynamics Laboratory coupled general circulation model forced with varying concentrations of greenhouse gases. The dominant modes of SLP both represent much of the total variability and remain important in warmer climates. With SAT, however, the dominant modes are often related to variations in the sea-ice edge and so do not remain important once the ice has retreated; those unrelated to sea ice remain dominant in the warmer climates but represent smaller fractions of the total variability. In general, climate change tends to project most strongly onto the more dominant modes. The change in SLP projects partially onto the top two modes in the Northern Hemisphere, reflecting both an overall decrease in hemispheric SLP as well as the pattern of change. In the Southern Hemisphere the change projects negligibly onto the dominant patterns between equilibrium climates but very strongly onto the Antarctic oscillation–like mode in the transient integrations. Changes in SAT project partially onto the dominant modes but relate more to the mean warming rather than the pattern of change. In general, the change projects most strongly onto the more dominant modes. In all SLP domains, the projection of climate change overwhelmingly manifests itself as a linear translation in the mode, consistent with the linear interpretation. In SAT domains related to sea-ice variability, the projection reflects an increased tendency toward ice-free regimes, consistent with the nonlinear perspective; however this nonlinear projection represents only a small portion of the overall climate change.
منابع مشابه
A flood risk projection for Soleimantangeh Dam against future climate change
A sensitivity analysis of the flood safety of Solaimantangeh dam using a regional climate change simulation is presented. Based on the output of the CCSM (Community Climate Change System Model) general circulation model, the NIRCM (North of Iran Regional Climate Model) computes regional scale output with 50 km spatial resolution and 21 vertical layers. Using the SRES (Special Report Emission Sc...
متن کاملVertical structure of anthropogenic zonal-mean atmospheric circulation change
[1] The atmospheric circulation changes predicted by climate models are often described using sea level pressure, which generally shows a strengthening of the mid-latitude westerlies. Recent observed variability is dominated by the Northern Annular Mode (NAM) which is equivalent barotropic, so that wind variations of the same sign are seen at all levels. However, in model predictions of the res...
متن کاملPhase Speed Spectra and the Latitude of Surface Westerlies: Interannual Variability and Global Warming Trend
The extratropical annular-mode-like atmospheric responses to ENSO and global warming and the internal variability of annular modes are associated with similar, yet distinct, dynamical characteristics. In particular, La Niña, global warming, and the positive phase of annular modes are all associated with a poleward shift of midlatitude jet streams and surface westerlies. To improve understanding...
متن کاملClimate Change, Climate Modes, and Climate Impacts
■ Abstract Variability of the atmospheric and oceanic circulations in the earth system gives rise to an array of naturally occurring dynamical modes. Instead of being spatially independent or spatially uniform, climate variability in different parts of the globe is orchestrated by one or a combination of several climate modes, and global changes take place with a distinctive spatial pattern res...
متن کاملImpact of 2000–2050 climate change on fine particulate matter (PM2.5) air quality inferred from a multi-model analysis of meteorological modes
Studies of the effect of climate change on fine particulate matter (PM2.5) air quality using general circulation models (GCMs) show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statis...
متن کامل